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I. INTRODUCTION

A. Introduction
The problem of sequencing has been the subject of extensive research

in recent years. In its general context, the sequencing problem is the
problem of defining order (rank, priority, and the like) over a set of
jobs (tasks, items, commodities) as they proceed from one machine
(processor, facility, operation) to another or over the same machine.
Thus, the sequencing problem involves the determination of the rela-

tive position of jJob J to all other jobs. Moreover, a sequence is

obtained when a complete ordering of the jobs is given.

"Sequencing" is often used synonymously with "scheduling." The
scheduling problem is to find the order in which jobs should be processed
at each machiné and their start and finish times at each machine. In
the deterministie case, no distinction is made between sequencing and
scheduling because, in the process of finding the best sequence, a
schedule is automatically generated since it is always assumed that each
activity is started as early as possible (Elmaghraby, 1968a).

Sequencing problems arise quite naturally in various activities
of everyday life. In the area of operations research, one of the most
classical examples is the problem of cequencing n Jjobs on m machines
in which each Job has its individual route (i.e,, the order of opera-
tions on the Job usually imposed by technological requirements, such as
a hole cannot be tapped before it is drilled, ete.), which may be

distinct from all others. The feasible seqpenée obtained thereof should



result in an optimal or near-optimal performance for the shop with

respect to selected criveria.

B. Models

Different sequencing problems naturally lead to different models,
which implies differences in the three basic comstituents of a model:
(i) parameters, (ii) assumptions, and (iii) criteria.

The realm of the job sequencing problem can be decomposed into
two general groups: those in which job arrivals are considered to
be static and those in which job arrivals are dynamic, that is, varying
over time. In this dissertation, we will confine ourselves to the
static or deterministic system.

In general, with respect to job sequencing problems, systems are
divided into those with a single processor and those with multiple
processors. We will be concerned with the latter system.

Multi-processor systems exhibit almost unlimited varieties of
arrangements of facilities and of flow of work through the facilities.
In general, the following list of typical simplifying assumptions is

made:

1. Assumptions concerning jobs

a. All n jobs are simultaneously available at the beginning of
the planning period.
b. Each job is an entity, even though the job is composed of

individual parts. This eliminates "job splitting" between two or more



machines. It also eliminates assembly operations.

c. No job may be on two processors at the same time. This
rules out "lap-phasing" in which the same Job is started on a second
operation as soon as a few units are available from the first operation.

d. The job routing is given and no alternate routings are per-

mitted.
e. Jo pre-emption is allowed.
f. The processing time of each job is known and deterministic.

g. Processing times and setup times are independent of the

sequence.

h. All jobs are of equal importance.

2. Assumptions concerning machines

a. All m machines are available at the beginning of the planning
period and are ready to take up any of the jobs.

b. At most one Jjob can bLe processed on g specific machine at any
glven time. This eliminates processes such as ironworker, heat treating
ovens, chemical treatment tanks, all of which are commonplace processes

that handle multiple jobs simultaneously.

¢. There is only one machine of each type in the shop.

3. Others
a. In-process inventory is allowed.
b. Due-dates, if they exict, are fixed.
In this dissertation, assumptions 2b and 2¢ concerning machines have

been removed. In Chapter 2, an algorithm is developed for the multi-



machines multiple facilities system. In Chapter T, the algorithm is
modified to remove assumption 2b. Chapter 8 includes a brief discussion

enploying other assumptions.

C. Criteria
In sequencing problems, the number of feasible schedules is so
Large that it is uneconomical to enumerate all the feasible schedules
for any problem beyond relatively small ones. All feasible schedules are

not equally desirable. A firm has limited resources and the management

of the firm usually wishes to minimize cost. A few of the important
costs are:

(a) operation costs,

(b) machine idle costé,

(¢) job waiting costs (in-process inventory costs),

(d) penalty costs if the jobs are late
The sum total of the above four costs is called the "cost of production",
and the scheduling problem is to find that feasible schedule which mini-~
mizes the cost of production. '"Generally, research workers in the field
of scheduling have adopted a simple measure of performance, called the
make-span (or maximum flow time) as representative of the cost of
production” (Gupta, 1971). Maximum flow time is defined as the elapsed
time between the start of the first Job in the sequence on the first
machine., In tni

a
P

dissertation the maximum flow tinme iteri
as a measuare of performance. Chanter 5 presents a brief discussion

on the evaluation of this criterion.



D. Methodologies
There are basically four different approaches used in solving
sequencing problems: (&) combinatorial, (b) general mathematical
programming, (c) reliable heuristics, and (d) Monte Carlo sampling

(Elmaghraby, 1968a).

1. Combinatorial approaches

Combinatorial approaches rely on changing one permutation to
another through the "switching around" of jobs that satisfy a given
criterion. The fundamental concept in this approach is best expressed

by the following theorems due to Smith (1956).

Theorem 1: Let £(Q) be the measure of any permutation Q of jobs
{1, 2, ..., n}. It is desired to minimize its value. Let Q¥ be
o given permutation. Then a sufficient condition that f£(G¥) = £(Q)
for all permutations Q of the n Jjob is that:

(i) There is a real valued function of ordered pairs of elements
such that if Q is any permutation and Q' 1is the permutation ob-
tained from Q by interchanges of the ith and (i+l)st elements,
then £(Q) = £(Q') if gla,s a5,,) = gla,,s 9,

(ii) Q* is such that the ith Jjob precedes the jth Job if

g(i,3) < g(d,i).

ct

Theorem 2: Let Q be any permutation of the n Jjobs, Q3 (1, 2, ...,

k4

i, Js +e.o n) and let £(Q) be a bounded function of satisfying con-

dition (i) of Theorem 1 if f(Q) can be represented as



£(Q) = gli,j) 0{Q - (i,3); g(i,3)}, where the symbol "o" denotes a
binary operation which preserves inequalities on the real line,

{qQ - (i,j)} denotes the sequence Q minus the pair i and Jj, in that
order, and ¢ is a monotone function of g(i,J).

The proof of this theorem is given by Elmaghraby (1968b). By
definition, the operation "o" satisfies the relationship; if a, b, and
c are three points on the real line, and if a Z b, then aoc 2 boe.

If Q' = (1,2, evvy o iy «v., n), then g(J,i) is 3 g(i,3).

Suppose that g(Jj,i) 2 g(i,j); then we have

g(i,j) o9 {Q" - (J,i); g(J,i)} by property of "o"

v

g(i,3) o# {Q - (i,3); &(i,J)} by property of "o" and
monotonocity of in g

tv

= £(Q).

This combinatorial approach was the basis for the papers by Jackson

(1956), Johnson (1954), and Smith (1956).

2. General mathematical programming

General mathematical programming includes linear, dynamic, quad-
ratic and convex programming, integer programming, networks of flow,
Lagrangian methods, and the like,

Bowman (1959), Wagner (1959), Manne (1960), and Balas (1967)

regard the scheduling problem as a conventional programming



problem and suggest & linear programming solution with integer
constraints on its solution. Based on the structural arguments of the
problem, some integer constraints are listed and the objective func-
tion is defined as the minimization of the maximum flow time. This
formulation of scheduling problems is sound from & mathematical view-
point. However, due to excessive computational requirements, the cost
of obtaining results is prohibitive even for small sized problems
(Story and Wagner, 1963).

Dynamic programming has also been used with some success in formu-
lating and solving the combinatorial problems. But in most instances,
this formulation has served as a means of deﬁonstrating its effective-

ness only in small size problems.

3. Reliable heuristics

Reliable heuristies are sometimes known as "combinatorial programming'
or "controlled enumeration." In essence, they are problem-solving pro-
cedures developed on the basis of two principal concepts: the use of
a controlled enumeration technique for considering all potential solu-
tions and the elimination from explicit consideration of particular solu-
tions which are known from dominance, bounding, and feasibility con-
siderations to be unacceptable.

An alternate name for such programs is branch-and-bound (Elmaghraby,
1968a) the name given to the ideas employed by Little, Murry, Sweeney
and Karnel (1963) in their algorithms for solving the travelling sales-

:man problem. The "branch" notion stems from the fact that in terms of



a tree the procedure is continually concerned with choosing a branch
of the tree to elaborate and evaluate. The "bound" term denotes their
emphasis on the effective use of means for bounding the value of the
objective function at each node of the tree both for eliminating domi-
nated parts and for selecting a branch for elaboration and evaluation.
The efficiency of the branch-and-bound procedure largely depends
on lower bounds used in the process of generating schedules (Gupta,
1970; Nebeshima, 1967b). The papers by Ignal and Schraze (1965),
Nabeshima (1967a), Gupta (1970), Ashour (1970) describe several bound-
ing procedures which can be used in selecting a branch. However, the
efficiency of the algorithm does not necessarily increase with the in-
crease in the effectiveness of lower bounds because of excessive computa-
tions required in calculating the bounds (Ashour and Quraishi, 1969;
Nabeshima 1967a; Gupta, 1970).
The two important points emphasized by Elmaghraby (1968a) can be
mentioned here. First, reliable heuristic approaches guarantee
the eventusl finding of an optimal solution. "Second, such approaches
need not have their upper limit on the number of alternatives generated in
the complete space of all possible sequences. In some instances, the
upper limit is much smaller than that, such as the number of alterna-
tives that would be generated by some mathematical programming approaches.
(The problem treated by Elmaghraby and Cole (1963) has its upper
bound on the nodes of the decision tree the " ncdes of the dynamic
programming formulation of the same problem, which is much smaller than

the complete space of all possible sequences, which is n!). In these



instences, the approach through reliable heuristies can never do worse
(from a computing point of view), and in all probability will do much

better, than the best mathematical programming approach!"

L., Monte Carlo

Monte Carlo experimentation has been used in two somewhat different
applications.

The natural "habit" of the Monte Carlo technique is evidently in
stochastic systems, i.e., in systems in which the parameters vary in
a probabilistic fashion over time. Since we will be concerned only
with the deterministic sequencing system, our discussion on Monte Carlo
approach will be made in a completely different context.

In Monte Carlo methods, schedules are generated at random and
after "enough" schedules have been obtained, the best of them is
retained. Chances of achieving a near-optimal solution are good if
enough schedules are generated.

The primary advantage of a Monte Carlo approach is that a solution
for a large complex problem can be obtained in a reasonable length of
time, especially with the development of computer technology. Almost
any sequencing problem can be approached by Monte Carlo methods since
these procedures are easily stated and readily understood. Such a
method allows "tentative" results to be obtained early for new se-
quencing problems without regard to the availability of algebraic solu-
tion procedures, constraints, or algorithm convergence.

A Monte Carlo version of the Giffler-Thompson program (1960)
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does not guarantee the finding of an optimal schedule, but it does permit
the computation of a fairly large number of feasible schedules chosen

at random in a reasonable amount of time; consequently, the shortest

one found can then be chosen. By continuing the process long enough

it is possible to make the probability of not having observed an opti-
mal schedule very small. Of course, the cost of ccmputation must also

be considered.

Heller and Logemann (1962) describe a Monte Carlo approach from a
graph-theoretic point of view, as opposed to the Gantt-chart approach
which motivated Giffler and Thompson (1960). This approach can generste
schedules more rapidly than Giffler and Thompson procedure. "This
time estimate is gbout half that tentatively reported by Giffler and
Thompson" (Heller and Logemann, 1962).

Heller and Logemann (1962) indicated that a potential area "for
further research" was the modification to give a better subset of
feasible schedules by using the concept of left-shifting which permits
an operation to "jump over" another operation into an interval of the
time if that interval is large enough to accommodate the shifted
operation. This is the starting point of the research for this disserta-
tion. The Monte Carlo algorithm that we will develop will be for multi-
machine facilities with the concept of left-shifting incorporated.

This algorithm will be further modified to relax assumption 2 con-
cerning machines as mentioned in section B. This modified algorithm
can then be applied, as we shall see in Chapter T, for transportation

problems.
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Two factors pose potential severe limitations on the utility of
Monte Carlo methods for solving sequencing problems: the efficiencies
of the algorithms and the rules for halting the sampling processes.

The random generation of sequences can be quite inefficient since
such sequences are often far from optimal. Therefore, much
computational effort is spent in generating sequences of mediocre
value. However, neighborhood search technigues, as proposed by Reiter
and Sherman (1965) tend to increase the efficiency of the Monte Carlo
techniques by searching exhaustively all sequeances in the neighborhood
of a given solution. Various dispatch rules, such as those described
by Conway, Maxwell and Miller (1967), are also available for improving
the efficiency of Monte Carlo methods. Giffler, Thompson and Van Ness
(1963) showed that a Monte Carlo process that uses rules as guides in
its random choices will be considerably superior to a purely random

choice device. In fact, Fisher and Thom

ing strategies to guide the program in its use of rules. In this
dissertation, biasing techniques are used to improve efficiency of the
randomly generated solutions.

Another important aspect of the Monte Carlo approach is the need for
rules to stop the sampling procedures. Tis problem has been recognized
by many. In this respect, Heller's (1960) observation is worthwhile to

mention. "By combinatorial means rooted partly in a lattice-theory

framework, it has been shown that although there are many possible
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schedules there are far fewer different schedule times. Because of

the relatively small number of different schedule times for any given

set of processing times, we might expect the probability distribution

of the schedule times over the set of all schedules to have a simple
form." He concludes that "the numerical experiments show that the distri-
bution of schedule times is normal; theoretical analysis indicates that
the schedule times are asymptotically normally distributed for schedules
with a large number of jobs." The argument continues that this normality
can be used to determine decision-theoretical rules to terminate sampling
vwhen the cost of continued sampling exceeds the expécted gain from
further sampling. This argument motivated different researchers such

as Elmaghraby (1968a) to define closed form stopping rule functions.

As we shall see in Chapter 3, Elmaghraby (1968s) himself casts some
srguments against his own stopping rule function. There is some ques-
tion about the asymptotic normality of the distribution, but aside

from that there are at least two obstacles that lie in the path of a
practical procedure (Conway, Maxwell and Miller, 1967):

(a) If the distribution of schedule-times is approximately and/or
asymptotically normal, the departures from normality will be most
pronounced in the tails of the distribution, which is precisely the
area of interest. No one is concerned with estimating the mean of
the schedule time distribution for a particular problem.

(v) It is inconceivable that anyone would be sampling from this
distribution, for there are ébviously more efficient subpopulations

readily available.
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By Bayesian analyses, Randolph (1968) proposed a multinomial
stopping rule for Monte Carlo sampling. Different aspects of this rule
have been presented in Chapter 3.

In the study of the behavior of the extreme points in samples
drawvn from a bounded population, the theory of extreme values plays an
important role. '"Based on the assumption that the observed phenomena
can be described by the limiting distributions of greatest (or smallest)
values in random occurrences, the theory has been applied to a variety
of engineering and astronomical problems" (Bae, 1972). An application
of the theory to the combinatorial problems first appeared in plant
layout problems (McRoberts, 1971). This will be discussed in Chapter 3
and Chapter 6.

In Chapter 3, we have suggested some distribution-free stopping
rules for halting the sampling procedure. These stopping rules which
are easily understandable have been incorporated in the algorithm pre-:

sented in this dissertation.

D. Summary of Research Objectives
In Chapter 2, a Monte Carlo algorithm will be developed for the
multi-mechines multiple facilities system. Left-shifting principle will
be incorporated in the algorithm to get a better subset of the feasible
solutions. The algorithm will work irrespective of whether the machines
at a particular work center are either identical or not.
Chapter 3 discusses the different distribution-free stopping rules

to be used in the algorithm for halting the Monte Carlo sampling.
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Chepters 4 and 5 present analyses of different sample problems.
Different parameters such as minimum schedule time, sample size needed,
CPU time, distribution of the schedule time, etc., will be examined.
The effects of the left~-shifting principle and different biasing tech-
niques in improving the efficiency of Monte Carlo sampling will be
studied.

Chepter 6 gives some statistical analysis of the solutions. The
main parameters of interest are the estimated minimum and the proba-
bility of further improvement of the solution. The Weibull distribu-~
tion will be used as a tool to estimate the minimum bound value of the
schedule time.

Chapter 7 shows a modification of the algorithm in Chapter 2 which
is applied to a transportation-type problem. This modified version is
also .applicable to a system where one or more machines can process

simultaneously.

(2]

different Jjob

Chapter 8 presents some guidelines for further research.
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II. SCHEDULING ALGORITHM

A. Introduction

This chapter will deal with the actual develoﬁment of an al-
gorithm to minimize maximum.flow time for multi-machine facilities
with the concept of left-shifting incorporated in the algorithm. The
following simple problem will be considered for illustration.

Consider five jobs and three facilities. Each of two facilities,
A and B, has two machines with different efficiencies for doing the
same operation. The two machines in facility A are Al and A2,
and those in B are Bl and B2. Facility C has only one machine.
The problem has technological orderings and processing times as given

in Tebles 2.1 and 2.2., respectively.

Table 2.1. Technological orderings

Job Operations
1 2 3
1 A A2 c A1l A2¥*
2 Bl B2 Al A2
3 c Bl B2 c
4 A A2 Bl B2
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Table 2.2. Processing times

Job Operations
1 2 3
1 2 3 6 o7
2 8 9 2 5
3 3 3 &
4 3 k4 6
5 2 5 7

For the sake of illustration of the algorithm, A, B and C
will refer to facilities 1, 2 and 3, vrespectively. Al and A2
will refer, respectively, to machines 1 and 2 of facility 1.
Similarly, Bl and B2 denote the machines 1 and 2 in facility B.

Let us now denote each of the operations by a guadruple of
integers (ijkf), where

i: facility

j: machine within facility

k: Jjob to be processed

g: gth time job k is in machine J of facility i,
For example, Table 2.1 refers to operation number 3 of job 1 in
machine A2 marked *, Here,

facility: A => i=1

machine: A2 => j=2

job: 1 => k=1
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second time job 1 in facility A => g =2

so, the operation will be denoted by (1212).

B. Computer Aspects of the Algorithm
In section D, we will see that we have to pass through different
iterations to come up with a feasible solution. ZFach iteration con-
tains seven columns. The entries of some of the columns will remain
the same and some will change as we proceed with the algorithm.
Every time, before we start to generate a feasible solution, the
entries of all the columns are to be changed to their initial values.

The different columns have the following interpretations.

Table 2.3. Columns 1 and 2

Column 1 Colum 2

Operations designation Operation/operations
(if any) that immediately
follow operations in
column I

Opérations in columns 1 and 2 will be put into the notation ijke
as mentioned in section A. Column 1 will contain all the operations,
some of which will become inactive as the algorithm proceeds and will
never be executed. This is because some operations are mutually
exclusive in multi-machine facilities.

The number of operations in column 2 is 0, 1, or more then 1,

depending on whether the operation in column 1 is, respectively, the
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last operation of any job or the following operation will be processed

in a single or multi-machine facility.

Table 2.4. Columns 3, 4 and 5

Column 3 Column 4 Column 5
Switch indicating Processing time Index signifying
the state of the of the operation the number of times
operation in col- in column 1 machine has been used
umn 1

The entries in colum '3 are 1, 0 and -1 indicating the
state of the operation in column 1 in the following manner:

1 => not scheduleable

0 => scheduleable

=1 => gcheduled

Initially, all the entries in column 5 are zero.

Table 2.5. Columns 6 and T

Column 6 Column T
Starting time of the Completion time of the
operation in column 1 operation in column 1

Initially, all the entires in columns 6 and T are zero. It is to

be noted here that the entries in columns 5, 6 and T can have realistic
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meanings only when the corresponding operation in column 1 has been
processed,

The different important arrays used in the computer program are:

ICl: which job to be processed

IC2: which job must follow

IC3: switches of column 3 (1, 0, -1)
ICk: processing time

IC5: indexes indicating number of times the machines
have been engaged

IC6: starting time of the operations
ICT: completion time of the operations
ISAVE: the best solution found so far from sampling

IDT: total processing time for each sample

ICS3: track on the initial setting in IC3

IND: number of entries in IC2.
IC1 and IC2 remain the same during the entire sampling process. IC3
changes its value, but its initial setting is stored in ICS3. IC5,
IC6y and ICT are initially set to zero before sampling begins.
IFIND is the row corresponding to the operation selected for process-
ing, and MJM refers to the maximum job time.

The program can handle 500 operations and generate 1500 schedules.

Steps of the computer program are as follows:

Step 1. Resolving or initializing: Resolve the data and make the

proper entry to each of the arrays from ICL to IC7. If any schedule
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is already found, reinitialize all the entries.

Step 2. Randomization in selecting a process: Randomization proce-

dures will be discussed in section C. Check IC3 to see if there is
a zero in any row. If no zero entry is found, a feasible schedule
has been obtained and step 6 follows. Otherwise, count the number of
zeros and select one of the processes at random. IFIND is the row
selected by randomization. Turn the switches from O (or 1) to -1

corresponding to IFIND and its counterparts.

Step 3. Job time and machine time: Calculate maximum job time MJIM

and maximum machine time corresponding to IFIND. If generation of
schedules by left-shifting is desired, go to step 9; otherwise,
process the operation at max (Maximum machine time and MJM). This

18 C6'

1. e

Step 4. Adjustments after processing: Put C6 in IC6. To this value

add the entry in ICh and put it in IC7. Find the maximum entry
(MAXM = IMAX) in IC5 corresponding to this machine; increase it
by 1 and put it in column 5. Note that all these changes are made

with respect to IFIND.

Step 5. Operations to follow: Check IC2. If there is no entry

corresponding to IFIND, go to step 2. Otherwise, count the number
of operations (NC) that are associated with IC2. Select one
operation at random. Turn the switch on in IC3 from 1 to 0 for

this operation. Go to step 2.
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Step 6. Schedule time: Find the maximum value in IC7. This is the

schedule time C,. If this is less than or equal to the best previous

T

C write out this tableau.

7’

Step T. Stopping rule: Update NPROB (number of feasible solutions)

by 1. If NPROB 1is not a multiple of the specified sample size, go
to step 1. Otherwise, call the desired stopping rule and check the

criterion. If it is met, step 8 follows; otherwise, go to step 1.

Step 8. Printout: Print all of the processing times found so far in

descending order. The program is terminated at this point.

Left shifting:

Step 9: Check IC5 and find maximum number of times the machine
is used (MAXM). If MAXM = 0, process the operation starting

at MIM and go to step 4; otherwise, step 10 follows.

Step 10: Check C, and C, corresponding to the ith entry
oLep Y 6

T
<
of IC5 corresponding to machine in IFIND, If C_, - MJM, then

Ti
check whether i = MAXM, 1If it is, process job at MJM and go to
step 4. Otherwise, go to the next entry (i = i+l) and repeat the
<
process until C?i > MIM, Now, if C6i - MIM, go to step 12.
Otherwise, step 11 follows.
Step 11: Check the interval between MJM and the starting point

of the job corresponding to 1ith entry, i.e.,

IAVA = 06. - MIM
i
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Check ICh and find the processing time INTV. If TAVA Z INTV, then
increase all the positive entries except less than i in IC5 by 1,

and then process the job in that interval starting at MJM and go to

step 4 to make the necessary adjustments; otherwise, step 12 follows.

Step 12: Check if ith entry is equal to MAXM. If it is,
process the job at maximum machine time and go to step L. Otherwise,
go to the next entry and find the interval

IAVA = C6i+l - CYi

If IAVA 2 INTV, increase all the positive entries greater than i
in IC5. All these changes correspond to the machine in IFIND.
Process the job in that interval and go to step 4 to make the
necessary adjustments. If TIAVA < INTV, go to the next entry of
IC5 and continue the process. If nothing is found up to and includ-
ing MAXM, then set IOUT to O (no left shifting is possible) and
proceed to process the job at max (Meximum machine time and MJM)

and go to step L.

C. Random Selection of a Process
There are two procedures by which random selection of a process
can be accomplished. Both procedures generate numbers by using an
aveilable computer routine called RANDU (IX, IY, XX), where

IX

starting number

IY = a number generated by the subroutine
After each operation, IX is given a value equal to IY in order to

have a different starting number in a later call statement.
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XX = a random number generated between O and 1

Procedure 1: Let us assume that we have three processes and we have
to select one at random. By using the subroutine, XX 1is generated
with the result being

xx < 1/3 = select process 1

XXz(1/3, 2/3) => select process 2

Xx 2 2/3 => select process 3

Procedure 2: The random selection of any process in this dissertation
has been based on a procedure different from the above.
Let us suppose the number of processes is b. After generating
XX as before a new value of XX, XX¥, is calculated as follows:
XX¥ = XX(b-1) + 1.5
where XX is a real random variable uniformly distributed between
0 and 1. A process is selected corresponding to the value of XX¥¥

which is an integer obtained after dropping the decimal part in XX¥.

D. Discussion of Iteration Procedure
Referring to the discussion in the previous sections, let us now
proceed to apply the algorithm to the problem given in section A.
cLi, CL2, CL3, CL4, CL5, CL6 and CL7 refer to the seven columns
of the tableaus in different iterations.
In Table 2.6 the problem has been defined completely in algorithmic
notations, showing the technological orderings between the operations.

The processing times have been entered in column 4.
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Table 2.6. Iteration O

CL1 CL2 CL3 CL4 CL5 CL6  CLT
1111 3111 0 2 0 0 0
1112 1 4 0 0 0
1121 1 2 0 0 0
1141 21k1, 2241 0 3 0 0 0
1151 1 5 0 0 0
1211 3111 0 b 0 0 0
1212 1 7T 0 0 0
1221 1 5 0 0 0
1241 21k1, 2241 0 4 0 0 0
1251 1 7 0 0 0
2121 1121, 1221 0 8 0 0 0
2131 3132 1 3 0 0 0
21h1 1 6 0 0 0
2221 1121, 1221 0 9 0 0 0
2231 3132 1 5 0 0 0
2241 1 T 0 0 0
3111 1112, 1212 1 6 0 0 0
3131 2131, 2231 0 2 0 0 0
3132 1 h 0 0 0

3151 1151, 1251 0 2 0 0 0




To start the scheduling procedure of the example problem, we see

+hat certain operations are scheduleable; i.e., there are 0 entries in CL3

corresponding to these operations.

Iteration 1: From the scheduleable operations, 1111, 11kl, 1211,
1241, 2121, 2221, 3131, 3151, let us randomly select 1211. We turn
the switches in IC3 corresponding to 1211 and its counterpart
1111 from 0 to -1.

Job 1 was not processed, and the machine was not engaged

previously. So
max (Maximm machine time and MJM) = max (0,0) = O

which means starting time is 0, and the completion time is 0 + Ch
=0+ 4 =k, The index corresponding to IFIND in IC5 is increased
by 1 whicﬁ updates MAXMJ to 1.

The identification in column 2 corresponding to IFIND is 3111. So
the switeh in IC3 corresponding to 3111 is reset from 1 to O,
showing that the operation is now scheduleable. All these changes have

been reflected in Table 2.7.

Iteration 2: Now we have the possibility of scheduling one of the
operations 1lkl, 12hl, 2121, 2221, 3111, 3131, 3151. Let us suppose
we select 2121. We turn the switches in IC3 corresponding to

2121 and its counterpart 2221 from 0 to -1. Job 2 was not
processed, and the machine was not engaged previously. So, max

(Maximum machine time and MIM) = max (0,0) = O.
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Table 2.7. Iteration 1

CLl CL2 CL3 CLL CL5 CL6 CLT
1111 3111 -1 2 0 0 0
1112 1 Y 0 0 0
1121 1 2 0 0 0
11h1 2141, 2241 0 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 4 1 0 L
1212 1 ( 0 0 0
1221 1 5 0 0 0
1241 2141, 2241 0 4 0 0 0
1251 1 T 0 0 0
2121 1121, 1221 0 8 0 0 0
2131 3132 1 3 0 0 0
21k1 1 6 0 0 0
2221 1121, 1221 0 9 0 0 0
2231 3132 1 5 0 0 0
22h1 1 T . O 0 0
3111 1112, 1212 0 6 0 0 0
3131 2131, 2231 0 2 0 0 0
3132 1 b 0 0 0

3151 1151, 1251 0 2 0 0 0
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So the starting time is O and the completion time is O + Ch =0+ 8=28.
MAXMJ = 0, so the index in IC5 is now increased to 1. In column 2
corresponding to IFIND, there are two operations, 1121, 1221. Let

us randomly select 1221 and turn the switch in IC3 corresponding to

1221 from 1 to O. Table 2.8 reflects the above changes.

Tteration 3: Among the scheduleable operations 1141, 1221, 1241,
3111, 3131, 3151, we randomly select 3111 and turn the switches in
IC3 as before. Now machine 3 was not previously engaged, but job 1

was processed in machine 1. Therefore,

max (Maximum Machine time and MJM)

= max (0, 4) = 4

So, the starting time is 4 and completion time is L4 + 6 = 10.
Adjustment in IC5 is made as outlined above. From column 2,
we randomly select 1112 and make the necessary adjustment in IC3

corresponding to 1112 as before. These are shown in Table 2.9.

Iteration 4: Among the schedulesble operations 1112, 11ki, 1221,

1241, 3131, 3151, we randomly select 3131, Here MIM =0 and Ce
corresponding to the lst operstion on the machine is 4. So IAVA

(gap) = Cg - MM =Lk - 0 =4,
INTY = Ch (IFIND) = 2

So, IAVA > INTV. We ther 'wre process the job in the gap corresponding

to IAVA and increase the positive entry in IC5 corresponding to this
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Table 2.8. Iteration 2

CL1 CL2 CL3 CL4 CL5 CL6  CLT
1111 3111 -1 2 0 0 0
1112 1 L 0 0 0
1121 1 2 0 0 0
1141 21k1, 22k 0 3 0 0 0
1151 1 5 0 | 0 0
1211 3111 -1 L 1 0 L
1212 1 T 0 0 0
1221 0 5 0 0 0
12k1 2141, 2241 0 L 0 0 0
1251 1 T 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 1 3 0 0 0
2141 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 1 5 0 0 0
22h1 1 T 0 0 0
3111 1112, 1212 0 6 0 0 0
3131 2131, 2231 0 2 0 0 0
3132 1 4 0 0 0

3151 1151, 1251 0 2 0 0 0
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Table 2.9. Iteration 3

CLl CL2 CL3 CLY CL5 CL6 CLT
1111 3111 -1 2 0 6 0
1112 0 L 0 0 0
1121 1 2 0 0 0
111 2141, 2241 0 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 L 1 0 4
1212 1 T 0 0 0
1221 0 5 0 0
1241 2141, 2241 0 L 0 0 0
1251 1 i 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 1 3 0 0 0
21h1 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 1 5 0 0 0
2241 1 7 0 0 0
3111 1112, 1212 -1 6 1 L 10
3131 2131, 2231 0 2 0 0 0
3132 1 i 0 0 0

3151 11%1, 1251 0 2 0 0 0
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machine by 1. Other adjustments are made as usual. This iteration is

shown in Table 2.10. In the incomplete Gantt chartsl snown in

figures 2.1 and 2.2, we see the improvement by left shifting accom=

plished in this iteration.

C 3 . — 1

2 L 6 8 10
Figure 2,1. Left-shifting

T r v ¥

2 L 6 8 10 12
Figure 2,2, Non-left-shifting

1n the Gantt charts shown in figures 2.1 and 2.2, the horizontal

and the vertical axes, respectively, refer to time scale and machines.
The numbers sbove the horizontal bars refer to the job numbers. This
notation will be used in subsequent Gantt charts.
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Table 2.10. Iteration 4

CL1 CL2 CL3 CL4 CL5 CL6  CLT
1111 3111 -1 2 0 0 0
1112 0 4 0 0 0
1121 1 2 0 0 0
1141 21h1, 2241 0 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 4 1 0 4
1212 1 7 0 0 0
1221 0 5 0 0 0
1241 211, 2241 0 b 0 0 0
1251 1 7 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 1 3 0 0 0
2141 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 0 5 0 0 0
2241 1 7 0 0 0
3111 1112, 1212 -1 6 2 4 10
3131 2131, 2231 -1 2 1 0 2
3132 1 4 0 0 0

3151 1151, 1251 0 2 0 0 0
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Tteration 5: Among the scheduleable operations 1112, 1141, 1221,

1241, 2131 and 3151, we randomly select 1221 and process this

operation as usual. The switch in IC3 corresponding to IFIND changes
from 0 to ~1 and for 1121 (its counterpart) from 1 to -l.

A1l other adjustments are made as before. This iteration is shown in

Table 2.11.

Iteration 6: From the set of scheduleasble operations 1112, 11k,
1241, 2131 and 3151, 12kl is randomly selected. Here, MAXM = 2
and MJM = 0. We check the first positive entry in IC5 corresponding

to IFIND. We check IAVA.

IAVA C6 ~MM=0-~-0

L}
(@]

and, IAVA < INIV = ¢, (IFIND) = 2. This implies that 1left
shifting is not possible and we proceed to the next higher integer in
IC5 which is 2. Here C7 corresponding to entry 1 of IC5 and

C6 corresponding to entry 2 of IC5 are greater than MJM and
IAVA (gap) = 8 - 4 = 4 > INTV = 2;

so left shifting is possible and we can process this job in that
interval. We must also update entry in IC5 by changing the entry 2
to 3. All other adjustments are made as outlined before. This
iteration is shown in Table 2.12. Incomplete Gantt charts are shown

in figures 2.3 and 2.h.



Table 2.11. Iteration 5

33

CL1 CL2 CL3 CL4 CL5 CL6  CLT
1111 3111 -1 2 0 0 0
1112 0 L 0 0 0
1121 -1 2 0 0 0
11k 2141, 2241 0 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 4 1 0 L
1212 1 T 0 0 0
1221 -1 5 2 8 13
12h1 21h1, 2241 0 Y 0 0 0
1251 1 7 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 1 3 0 0 0
21h1 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 0 5 0 0 0
2241 1 7T 0 0 0
3111 1112, 1212 -1 6 2 Y 10
3131 2131, 2231 -1 1 0 2
3132 1 4 0 0 0
3151 1151, 1251 0 2 0 0 0
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Table 2.12. Iteration 6
CL1 CL2 CL3 CL4 CL5 cLé CLT
1111 3111 -1 2 0 0 0
1112 0 Y 0 0 0
1121 -1 2 0 0 0
1141 2141, 2241 -1 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 0 1 0 L
1212 1 T 0 0 0
1221 -1 5 3 8 13
1241 211, 2241 -1 L 2 Y 8
1251 1 T 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 1 3 0 0 0
2141 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 0 5 0 0 0
22h1 0 7 0 0 0
3111 1112, 1212 -1 6 2 L4 10
3131 2131, 2231 -1 2 1 0 2
3132 1 L 0 0 0
3151 1151, 1251 0 2 0 0 0




35

A2 1 Y 2
5 I 6 8 10 12 13

Figure 2,3. Left-shifting

A2 1 _— 2 b .
c . 1 L3
2 ' 4 6 8 10 12 14 16 17

Figure 2.4. Non-left-shifting

Iteration T: We select randomly 1112 from the scheduleable set of
operations 1112, 2131, 2410 and 3151 and process it as before. This

iteration is shown in Table 2.13.
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Table 2.13. Iteration T

CLl CL2 CL3 CL4 CL5 CL6 CLT
1111 3111 -1 2 0 0 0
1112 -1 Y 1 10 14
1121 -1 2 0 0 0
11k 211, 2241 -1 3 0 0 0
1151 1 5 0 0 0
1211 3111 B i 1 0 L
1212 -1 T 0 0 0
1221 -1 5 3 8 13
1241 21k1, 2241 -1 L 2 4 8
1251 1 T 0 0 0
2121 1121, 1212 -1 8 1 0 8
2131 3132 1 3 0 0 0
21k 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 0 5 0 0 0
22h1 0 7 0 0 0
3111 1112, 1212 -1 6 2 L 10
3131 2131, 2231 -1 2 1 0 2
3132 1 4 0 0 0

3151 1151, 1251 0 2 0 0 0
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Iteration 8: We select randomly 2231 from the schedulesble set of
operations 2231, 2241 and 3151 and process it as before. Referring to
figures 1 and 2, we see that the process starts at time 2 in left
shifting and at 12 in non-left shifting. Adjustments have been shown

in Table 2.1k.

Iteration 9: From the scheduleable set of operations o2k1, 3132,
3151, we randomly select 3132 and process this operation. Adjustments

are shown in Table 2.15.

Iteration 10: From the scheduleable set of operations 2241 and 3151, we

randomly select 2241. Here, max (Maximum machine time, MJM) = max (7,8)
= 8. So the process must start at 8 and is completed at 15. All

the adjustments are shown in Table 2.16.

Iteration 11: We now select the only possible scheduleable operation

; Ioape MIM = 0 and MAXM = 3. We check the first nogitive entrv
- - Do L v = CuCCh Lac 11020 pO2lLlVe DLy

in IC5 corresponding to IFIND and check TIAVA. Here, IAVA =
C,-MM=0-0-=0.
o

So IAVA < INTV = 2 and no left shifting is possible. We now
check IAVA with C6 corresponding to entry 2 and C7 corres—

ponding to entry 1 for this machine.

IAVA = 06 - C7 =4 -2=2

Now IAVA = INTV and left shifting is possible. We process this

Job in this interval and increase all positive entires in IC5 except 1
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Tteration 8
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CL1 CL2 CL3 CLh CL5 CL6 CLT
1111 3111 -1 2 0 0 0
1112 -1 Y 1 10 14
1121 -1 2 0 0 0
1141 2141, 2241 -1 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 Y 1 - b
1212 -1 7 0 0 0
1221 -1 5 3 8 13
1241 2141, 2241 -1 ) 3 L 8
1251 1 T 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 -1 3 0 0 0
2141 1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 -1 5 1 2 T
22h1 0 7 0 0 0
3111 1121, 1221 -1 6 2 4 0
3131 2131, 2231 -1 2 1 0 2
3132 0 Y 0 0 0
3151 1151, 1251 0 2 0 0 0
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Iteration 9
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CL1 CL2 CL3 CLh CL6  CLT
1111 3111 -1 2 0 0
1112 -1 L4 10 14
1121 -1 2 0 0
1141 2141, 2241 -1 3 0 0
1151 1 0 0
1211 3111 -1 4 0 i
1212 -1 T 0 0
1221 -1 5 8 13
124 21h1, 22h1 -1 L L 8
1251 1 7 0 0
2121 1121, 1221 -1 8 0 8
2131 3132 -1 3 0 0
21kl 1 6 0 0
2221 1121, 1221 -1 9 0 0
2231 3132 -1 5 2 T
22h1 0 7 0 0
3111 1112, 1212 -1 6 Y 10
3131 2131, 2231 -1 2 0 2
3132 -1 4 10 14
3151 1151, 1251 0 2 0 0
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Table 2.16. Iteration 10

CL1 CL2 CL3 CLh4 CL5 CL6 CLT
1111 3111 -1 2 0 0 0
1112 -1 L 1 10 14
1121 -1 2 0 0 0
1141 21kh1, 2241 -1 3 0 0 0
1151 1 5 0 0 0
1211 3111 -1 L 1 0 L
1212 -1 7 0 0 0
1221 -1 5 3 8 13
1241 21k1, 221 -1 4 2 b 8
1251 1 7 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 -1 3 0 0 0
2141 -1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 -1 5 1 2 7
22h1 -1 T 2 8 15
3111 1112, 1212 -1 6 2 b 10
3131 2131, 2231 -1 2 1 0 2
3132 -1 4 3 10 1h

3151 1151, 1251 0 2 0 0 0




by

corresponding to this machine. All other adjustments have been made
as usual and are shown in Table 2.17. The left shifting is shown in

the final Gantt chart, figure 2.5 after the last iteration 12.

Iteration 12: We now select the only scheduleable operaton 1151.
"Here MJIM = L4 and C6 corresponding to the first positive entry in

IC5 is 10. We again must calculate TAVA.
IAVA =10 - L =6 > INTV = C, (IFIND) = 5

«which implies left shifting is possible. We process this last opera-
tion in this interval and increase the only positive entry in IC5 by 1.
A1l other adjustments have been made as usual and are shown in Table
2.18. We notice that there is no zero entry in CL3 which means
we have obtained a feasible schedule.
Next we check ICT and see that the highest entry in this
arrey is 15. This represents the total processing time for this
schedule by left shifting procedures.

The final Gantt charts are shown in figures 2.5 and 2.6.
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Table 2.17. Iteration 11
CL1 CL2 CL3 CLY CL5 CL6 CLT
1111 3111 -1 2 0 0 0
1112 -1 Y 1 10 14
1121 -1 2 0 0 0
1141 2141, 2241 -1 3 0 0 0
1151 0 5 0 0 0
1211 3111 -1 4 1 0 4
1212 -1 T 0 0 0
1221 -1 5 3 8 13
1241 21k1, 2241 -1 Y 2 b 8
1251 1 T 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 -1 3 0 0 0
21k1 -1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 -1 5 1 2 T
2241 -1 7 2 8 15
3111 1112, 1212 -1 6 3 Y 10
3131 2131, 2231 -1 2 1 0 2
3132 -1 4 L 10 14
3151 1151, 1251 -1 2 2 2 L
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Table 2.18. Iteration 12

CLl CL2 CL3 CLk4 CL5 CL6 CLT
1111 3111 -1 2 0 0 0
1112 -1 L 2 10 14
1121 -1 2 0 o} 0
1141 2141, 2241 -1 3 0 0 0
1151 -1 5 1 L 9
1211 3111 -1 L 1 0 L
1212 -1 T 0 0 0
1221 -1 5 3 8 13
1241 2141, 224 -1 4 2 L 8
1251 -1 T 0 0 0
2121 1121, 1221 -1 8 1 0 8
2131 3132 -1 3 0 0 0
21h1 -1 6 0 0 0
2221 1121, 1221 -1 9 0 0 0
2231 3132 -1 5 1 2 7
22l1 -1 7 2 8 15
3111 1112, 1212 -1 6 3 L 10
3131 2131, 2231 -1 2 1 0 2
3132 -1 4 4 10 1k

3151 1151, 1251 -1 2 2 2 4
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D. TInput Format Used in the Computer Program

1. Format (LIL)

The first card in the data set includes four numbers.
1st number: total number of possible operations

2nd number: number of schedules (sample size) at multiple of
which stopping rules are applied

3rd number: starting random number (must be odd)

4th number: number of machines in the system

2. Format (I2)

The second set of data cards refers to the number of operations in
column 2. In this problem, there are 20 numbers corresponding to each
operation. Each number is punched in a different data card and

is arranged according to the arrangement of operations in column 1.

3. Format (13, (I6))

The third set of data cards refers to the entries in the first

and second columns of any tableau in the algorithm.

4, Formet (I2,I2)

The fourth set of data cards refers to the entries in the third

and fourth columns of Table 6 (Iteration 0).

E., Output Format of the Computer Output
Referring to Table 18, in the computer output only CL3, CLS,
CL6 and CLT are printed. In CL5, CL6 and CLT of Teble 18, there are

some zero entries, It means the operations corresponding to those



entries have never been processed. Because this is a multi-machines
facility system, other machines in the facility were used to perform

those operations.

F. Input Stream for the Sample Problem

Columns -+ 1 2 3 4 5 6 7 8 9 10 11 12 13 1bh 15 16...80

2 0 5 0 2 1 7 p]

11113111

315111511 1 2 5 1

0 2
1 Uk
0 2

By changing the format statement we can reduce the number of cards in

the input stream to one fourth.
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Gs Flow Chart of the Main Program

Figure 2.7 depicts the flow chart of the main program discussed
in section C. The different biasing techniques and the different
stopping rules used for analysis are not included.

In the flow chart, two different types of lines with arrowheads
are used. One is solid and the other is dotted. The former refers
to the active path indicating the relationship between ome block
and the next block of the flow chart; whereas. The latter refers to a
"qummy" path which merely keeps track of the "ordered" sequence of

the two steps.
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Step T No

GO TO

STEP 1

Call stopping routine

Is stopping

. .
criteria met?

Order the schedule
times
and

ST0P

Step 8

[
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III. STOPPING RULES

A. Introduction

As we mentioned in Chapter 1, without regard to the availability
of algebraic procedures, problem-size constraints, etc., the Monte
Carlo method allows "tentative" results to be obtained for almost any
sequencing problem. This method is basically characterized by
randomly generating sequences and then selecting the best from a large

Vaumber of such sequences.

For most of the combinatorial problems, the total number of
possible combinations is very large. The expression (n1)™ is often
cited for the number of schedules for an n Jjob m machine (n x m)
problem. To get a feel for the size of (n!)m, it should be suffi-
cient to note that (6!)5 is approximately 1.93 x lolh, which is

more than the number of microseconds in six years. But the above

expression provides in general neither a very good estimate nor an

apper bound. It is presumably based on the special symmetric problem

in which each job has one and only one operation on each machine (Conway,
Maxwell and Miller (1967). Even a present generation computer will not be
economically able to examine more than a fraction of the total number of
possible combinations for most combinatorial problems. Thus, a sample
of the combinations must be selected for examination.,

Monte Carlo technique, being a random sampling procedure, has to
choose sample points from a large sample set in sequencing problems.
Consequently, it poses potential serious limitations on the utility of

Monte Carlo methods for solving these problems as to how many semples
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to draw from the set before a decision cen be arrived at and what is
the statisticel measure of efficiency in relation to the "optimum"
solution. Otherwise, even for a small problem, it is not unlikely
that by the same algorithm, different schedules will be eenerated
unless the entire set is sampled. This would require a huge

expenditure of resources to generate all possible combinations.

The need for rules to stop Monte Carlo sampling procedures for
sequenciﬁg problems has been recognized by many. Elmaghraby (1968a)
sketched a process for halting Monte Carlo sampling for the job-shop
scheduling problem. His paper relied heavily on prior knowledge of
the distribution of sequence payoff. The short outline of his approach

is given below. To arrive at the optimal stopping rule, the scheduler

must construct a "loss function" which expresses dependence on

* 3
two variables: the minimum schedule time dn actually obtained
after n trials, and the changes of obtaining, through rendom

sampling, a better sequence. Let

®
1]

cost of experimentation per experiment

o’
n

measure of utility of a unit of time saved
in the duration of the sequences and

¢(x)dx = normel probability density function of
schedule time distribution with the esti-
mated mean u and standard deviation o, i.e.,

2
p(x)ax = 2o oxp [ 2B ] o
20
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The expected saving in time from the (n+l)st experiment is given

by
* * *
d % * dn -u dn
1 (dn - x) ¢(x)dx =bd 0 ——;—)- b S 7 xe(x) dx

where (¢) is the cumulative standard normal probability function.

Naturally, an experiment will be conducted when the expected
marginal gain is greater than the marginal cost, i.e., the extra
sample will be taken if

* *
* & - ’ %
p 4 el ) - 77 x¢(x) ax > a.

o - 00

Otherwise, experimentation halts, and the best sequence thus far
obtained is implemented.

Although Elmaghraby's stopping rule is conceptually valid,
it does not nave wide applic
In this regard it is sufficient to mention only two of his own
remarks. First, the measure of b is difficult because there is no
"a priori” knowledge of where the saving in time is going to occur.
Consequently, an average figure over all the machines is to be
assumed. Second, "the use of the theoretical density function (on
which the stopping rule is based) is naturally crucially dependent on
the stability of the 'product mix" from period to period, as well as
on the stability of the number of jobs to be sequenced. That is to say,
a different set of jobs requiring different processing times (i.e.,

sample points are drawn from different populations) would lead to a
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different, density function. On the other hand, if n, the number of
jobs to be sequenced, is different from period to period, it is not
immediately obvious how the theoretical density function should be
modified to cope with such variation" (Elmaghraby, 1963a).

In scheduling a problem, the experimenter is interested in the
extreme values, such as to maximize "pay-offs,” to minimize make-span
time, ete. Assumed distributions may not truly recognize the behavior
of extreme values. Therefore, placing total emphasis on an assumed
distribution, particularly where techniques for improving efficiency
are being applied, can lead to non-optimalstopping rules and ineffi-
cient sampling algorithms.

Randolph, Swinson and Ellingsen (1973) developed stopping rules
for sequencing problems in which a minimum of assumptions is made
about the characteristics of the pay-off distribution. The basic tool
emploved for their analysis is the sequential Bayesian decision
procedure. The approach is briefly described below.

Suppose observations X, and x2 are taken sequentially from a
given multinomial population. Each observation costs a finite amount
¢c. After each observation, the experimenter has a choice. He can
stop and receive a pay-off which is based on the values of the obser-
vations, or he can pay a fixed fee and continue with another observa-
tion., Let Y, T %, if sampling is without recall and Y, =
max(xl, cees xn) if sampling is with recall.

Let P(j) = unknown probability of pay-off, j =1, ..., k.

In the modified Bayes rule a prior distribution to the set of
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probaebilities is specified and after an observation is made, the prior
distribution is modified to reflect the information this observation
has given. After going through the Bayesian analysis, they showed

that the expected gross improvement in the sequence pay-off for the

(y.)

(n+l)st sequence is equal to the stopping rule function Tn+l n

which is given by

k
Tl = 2 G- w) B
yn+l
k
1
= z m(j -Y )a
m+n = J n
=4

where mj refers to the confidence coefficient corresponding to the
personal probability P(3).

Comparing the value of the above stopping rule function with the
value of ¢ will determine the stopping point; that is, if

T (yn) 2 ¢, the sampling should be stopped., Since v, is a

n+l

monotonically non-decreasing function of n, Tn+l(yn) is a de-
creasing function of n, which approaches zero as n increases.
Thus, sampling will always stop eventually.
The above stopping rule is derived independent of the prior distri-
pbution of the sequence pay-offs. But apart from the mathematical

complexity involved in converting the prior to the posterior distri-

bution after each sample and the difficulty in calculating true
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values of the pay-offs and cost, purely subjective confidence coef-
ficents mj's used in the stopping rule function must have a
biasing effect in the decision. Different experimenters having dif-
ferent degrees of confidence will come up with different "optimal"
sample sizes. For example, suppose two experimenters have exactly
the same personal probabilities, but they have different degrees of
confidence m in the personal probebilities. Also, suppose that the
experimenters have made n observations with the same Y, for

each experiment. Then since Tn+l(yn)(m) is a strictly inereasing
function of m (Randolph, 1968), there exist values of ¢ such that
for a given Y the less confident experimenter will stop, but the
more confident experimenter will continue sampling.

Samual H. Brooks (1958) discussed different random methods for
seeking maxima. There he mentioned how to determine the number of
trials required in random sampling. Quite analogously, Giffler,
Thompson and Van Ness (1963) calculated the number of trials needed
in random generation to come to a decision. They consider Monte Carlo
process as a binomial trials process in which either an "optimal"

schedule is obtained or not. Let

P = probability of favorable event
1 - P = probability of unfavorable event
1-(1- P)" = probability of getting an "optimal" schedule in

n trials.
If P can be considered as some specified lowest percent of schedule
time, then the stopping rule can be identified as determining the

number of samples corresponding to any confidence coefficient. But
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as McRoberts (1971) pointed out that in the explosive type combina-
torial problems, even a small value of P may require a sample
size which is computationally uneconomical.

McRoberts (1971) outlines and provides examples of the applica~-
tion of the extreme value distribution as mechanisms for estimating
optimum limits. This will be discussed in more detail in Chapter 6.
From the distribution of the extreme values obtained from randomly
generated independent samples, a minimum bound can be estimated. By
applying procedures outlined, two important variables of interest
can be studied: first, for a particular sample the deviation from the
estimated minimum can be found, and second, the corresponding proba-
bility of improvement can be measured., The useful decision model
described on the basis of the estimated minimum is as follows:

L
if I _ (L - 2) 4F(2) < CT/CO’
Z min
then accept the best criterion measure so far obtained and stop.
Otherwise, continue the search where CT = cost per trial, CO =
opportunity cost of improving the criterion measure and L = estimated
value of the lower bound 2.

The distribution of the extreme values has the advantage of
being independent of the parent distribution and the parameters, as
we shall see, can be easily obtained and interpreted. If the experi-
menter is interested in a schedule time within some specified
percentage of the estimated lowest value, this can be used as a

stopping rule for Monte Carlo sampling.
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B. Distribution-free Stopping Rules

In this section, we explain the different stopping rules that
we will use in the dissertation to halt the Monte Carlo sampling.
A1l of these are independent of the parent distribution of the schedule
time and can be easily incorporated into the scheduling algorithm.
The algorithm will terminate the sampling procedure when the stopping
rule function converges to a specified value. The fact that the
schedule time distribution is truncated at both ends will be useful

in the discussion of stopping rules.

1. Stopping rule 1

Let ith sample be drawn from the set of the feasible schedules
and the maximum (MAXi) and the minimum (MINi) schedule times
are determined. As shown in figure 3.1, A and B refer to the two

\

extrome points of the distribution.

Arbitrary distribution

> A=
=
o |
2 -
e
w‘—- —— —

Figure 3.1. Variables in stopping rule 1
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Next, the (i+l)st sample is drawn and as before (MAXi+l) and

(MIN1+1) are determined.

Take
MAX;,y = mex (MAX, ., . MAX,)
and
MINi+l = min (MINi+1, MINi)
b = -
As before, zi+l MAXi+l MINi+l

Now define the stopping rule function (%) by

If < El (a specified value). then sampling is stopped. Otherwise,
we make £ 5 = li+1 and continue sampling. Since A and B are
two fixed points, stopping rule function (%) will converge

eventually.

2. Stopping rule 2

Corresponding to the ith sample, let us determine three
variables, MAX, 5 MIN, and mean schedule time (ii). Then the (i+l)st
sample is drawn and the corresponding three variables are determined.
In figure 3.2, let A and B again refer to the extreme points
of the distribution. After each sample, the mean is always calcu-
lated on the entire number of schedules drawn so far. For example.,

let the sample size be n and the total number of schedules drawn at
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the end of the ith sample be N,. In this case X. and X,
i i i+l
are calculated as follows:
Ni
I T
z K=1 K
Xi = N , Where TK is the time for Kth
i schedule
i+n
P
d ‘}-( - ;l-——_
an i+1 N,

itrary distribution

=

=

=]

=

>

£l

g
aH~-— -

in i in 74 i i

Figure 3.2. Variables in stopping rule 2

Let us now teke

MAXJ'.+1 = max (MAXi+1, MAXi)

MIN, .5

min (MIN1+1’ MINi)

D, = X, - MIN,
1 L 1



141 e~ MIN1+1
D’ =mAx. - %

1 1 1

+ -
Diyp = MAX 0 - X

- +
Let us now define the stopping rule functions (D ) and (D)

as follows:
D = |y - D,
and
+ + +
D" = |p; - Di+1l
If D < €, (a specified value)
and
D+ <
_52’

sampling is stopped. Otherwise, we continue sampling. Since
ii's are approximately normally distributed, the value of ii will
be stabilized as more and more samples are drawn. As A and B

are fixed, MAXi and MINi will also be stabilized with more

samples. Therefore, stopping rule functions will converge eventually.

3. Stopping rule 3

This rule is the same as stopping rule 2 except that it does not
take into account the maximum value of the schedule in the sample .

Only the mean value and the left tail of the distribution arethe

considered. This rule can be estimated from rule 2 as folloﬁs:
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If D 5_33 (a specified value), sampling is stopped. Other-

wise, we continue sampling.

4. Stopping rule L

Assume the ith and (i+l)st samples are drawn and as before
MINi and MINi+l are determined. In this case, the stopping rule

function will be defined by

M= MINi - MINi+1

If M =0, sampling is stopped; otherwise, set

MIN; = min (MINi, MINi+1)

and continue sampling. Since the lowest value of the distribution

is fixed, function M 1is converging.

5. Stopping rule 5

Let P(i,j) be the processing time of job i on machine j.

Then the lower limit of the schedule time is defined by

LL = max {Z P(i,j), I P(i,j)} for all i,J.
i J

This lower limit is not usuaelly obtainable. In Chapter 6, we shall

estimate the minimum schedule time. Let the estimated minimum be e.
Let Ba be any desired lower limit so that it is within some

specified percentage of LL or e. Referring to the stopping rule k&,

we determine both maximum and minimum values. We define the function
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M and N by

=
n

MIN, - MIN,
and

N = MAXi+l - MAXi-

Now the stopping rule is defined as follows:

It MINi < Bd

or

sampling is stopped. Otherwise, we make

MIN, = min (MINi, MIN, .)

i+l
and

)

1

MAXi = max (MAXi, MAXi+

and continue sampling.

6. Stopping rule 6

As explained in stopping rule 5, the lower limit LL is not
normally obtainable. In a system having facilities with non-identical
multiple machines, it will be even more difficult to obtain the lower
limit. Therefore, the scheduler may not be interested in specifying the
stopping criterion on the basis of this lower limit. In this case, if
estimated minimum e is not available, the stopping rule 5 completely
ignores Bd and‘sampling depends only on the converging rate of M

and N.
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IV. SINGLE MACHINE ANALYSIS

A. Introduction

This chapter will deal with a special case of the multiple machine
algorithm which was presented in Chapter 2. Instead of multiple
machines in each work center, a single machine will be considered here.

As indicated in Chepter 2, the algorithm can generate two sets of
feasible solutions, one by Monte Carlo sampling and the other by incor-
porating in it the principle of left shifting. The difference between
these two feasible sets of solutions will be examined in detail with
respect to the different factors such as minimum schedule time, sample
size needed, CPU time, and distribution of the schedule time, etec.

The effects of biasing techniques on the gbove solutions will also
be explored.

The different distribution-free stopping rules discussed in Chapter
3 will be studied with respect to the gbove factors. A decision rule
will be suggested regarding the use of those stopping rules.

Before we enter into the different phases of analysis, let us make
some short remarks on the different parameters and variagbles that will
frequently be used in our discussion.

The most important measure of the worth of the Monte Carlo process
in our discussion will be the length of the shortest schedule observed.

In order to make a comparative analysis between the two sets of
feasible solutions obtained by the Monte Carlo process, g worthwhile
parameter to consider is the most probable schedule observed.

This provides some indication as to how close the shortest schedule
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observed is to the schedule having the highest probability.

In conjunction with the shortest and the most probable schedules,
another important parameter of interest will be the range which is
defined as the difference between the longest and the shortest schedules

observed. Figure 4.l shows the above parameters.

- - —— — = e

Probability

E—e—-——lRange —
! '

A B
Iength of the schedule

Figure L.1. Different Parameters

Q .-

In Figure 4.1, A = shortest schedule

B

most probable schedule

C = longest shcedule

Usually a scheduler is interested in obtaining a "good" solution
at the cost of a reasonable amount of resources. Therefore, in Monte
Carlo sampling, the number of schedules needed to arrive at a "good"
solution and the corresponding computer time should also be considered
as measures of the quality of the solution.

The following short notations will be used in our subsequent dis-
cussions: COMB: combination technique

MIN: time of the shortest schedule

MAX: time of the longest schedule

MPS: time of the most probable schedule
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R: range of the distribution

N: number of schedules

T: CPU time per schedule (in seconds)

NS: non-left-shifting

LS: left-shifting

BT: biasing technique (minimax technique)

LL: lower limit of the schedule time (discussed
in section B, Chapter 3, to explain stopping

rule 5)

UL: upper limit of the schedule time. This is equal
to the sum of all processing times

SR: stopping rule

B. Left-Shifting and Non-Left-Shifting

In order to make the shop situation more general and realistic,
the algorithm also considered the passing and backtracking of jobs on
some of the machines. This is why the total number of operations is not
necessarily the product of the numbers of jébs and machines as shown in
the sample problems of Table L.1l.

Processing times are uniformly distributed over the interval [1,9]
for the first four problems in Table 4.1, and for the remaining
problems the interval was changed to [10,99]. The technological order-
ing was chosen with the help of a random table. Solution parameters
and variables for the sample problems have been entered in Tables L.2
through L.8.

Tables 4.2 through 4.8 indicate the improvement in the solution by
left-shifting. In all the sample problems, the span of the minimum

schedule obtained by this technique is considerably lower than that by
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Table 4.1. Sample problems

Total Number

Sample Problem of Operations

5x b 16
9x b b1
9x 6 60
15 x b 68
6x T L6
6 x 10 60




Table L.2.

Sample problem 5 x 4 (LL = 27;

UL = 79)

Stopping Rules MIN MAX MPS
NS LS NS LS NS LS NS LS NS LS NS LS
Lip1 ~ % <1 32 30 61 4 29 15 L5 36 150 100 .026 .033k
1D, - DZlf .5 32 30 61 4 29 15 4 36 150 150  .027 .0361
and
+ +, <
R
o7, - D;IE 5 32 30 61 4 29 15 45 36 100 150  .027 .033k4
MIN, - MINi+l =0 32 30 61 Ls 29 15 45 36 150 100 .027 .033k
MIN , - Bd = LL
or
MINi - MINi+l =0 32 30 61 Ls 29 15 hs 36 150 100 .027 .0348
and
MAX - MAX, = 0

itl i

0.



Table k.3.

Sample problem 9 x L4 (LL = 563

UL = 246)

Storping Rules MIN MAX MPS )
NS LS NS 1S NS LS NS 1S NS LS NS LS
Ripp ~ &y < 1 68 62 122 99 54 37 110 71 80 80 .1h43 .143
4+ <
lDi*rl - Dil' -2
and 66 58 12k 307 58 49 107 77 120 120 .161 .170
- +, <
D4y = 05l =5
I, - D7l = .5 66 58 124 107 58 L9 107 77 120 120 .1hk .146
MIN, - MIN, . =0 68 62 122 99 54 37 110 71 80 80 .133 .136
MIN, ZBd=1.2 IL
or
MINi - MINi =0 66 62 124 99 54 37 107 T1 120 ko .143 .1Lks5
and
MAX. ., - MAX, =0

.



Table 4.4, Sample problem 9 x 6 (LL = 101; UL = 317)
MIN MAX R MPS
Stopping Rules N IS NS IS NS LS NS LS NS 1S NS LS
By =Ry <5 137 123 222 175 85 52 181 1k 60 60 .29 .32
- - <
| i~ i+l| =3
and 126 114 245 183 119 69 190 135 150 150 .31 .36
+ + < ’
lDi - Di+1| -2
lD; - D;+l| 2.5 132 116 233 183 101 65 197 135 120 120 .29 .33
MIN, - MIN, . =0 132 116 233 183 101 65 197 135 120 120 .29 .32
MIN, - Bd = LL
or
MIN, - MIN, . =0 132 11k 233 183 101 65 197 135 120 150 .33 .35
and
MAX - MAX. = O

el



Table

4.5. Sample problem 15 x k.

(LL = 1263

UL = 351)

St ing Rules MIN MAX R MPS
oPping ¥ s ©Ns 18 NS Ls Ns LS NS LS NS LS
L.- 254, <1 130 127 230 158 100 31 179 1k ko Lo .ho .52
1 169 133
_ _ < 131
|Di = Dyl -
and 130 127 241 170 111 43 179 133 60 60 .52 .55
Ipf - pf .| =
i i+l
] - D, | z 130 127 241 177 111 43 179 138 60 60 .52 .55
MIN, - MIN, ., = 130 127 230 158 100 31 179 1k1 ko 40 .49 .52
169 133
131
MIN, ZBd =1.01 IL
or
MIN, - MIN; ., = 130 127 230 158 100 31 179 133 Lo 20 .51 .55
and 169
MAX. . - MAX. =

€L



Table 4.6. Sample problem 6 x 7 (LL = 379; UL = 2123)
MIN MAX R MPS
Stopping Rules N .S NS 1S NS IS NS IS NS IS NS LS
zi =%y < 10 561, k97 1072 739 511 22 779 515 100 100 .22 .25
- <
lDi - Di+l| -
and 537 491 1103 739 556 248 763 515 150 200 .22 .25
+ -+ <
|Di - Di+l|
|5} - o7, z 561 497 1072 739 511 242 779 685 150 150 @ .22 | .25
515
MIN, - MIN, . = 561 497 1072 739 511 242 779 685 100 150 .22 .25
515
MIN, - Bd = LL
or
MIN, - MIN, . = 561 497 1072 739 511 243 779 685 100 150 .22 .25
MAX o15

i+l

- MAX
i

ik



Table L4.7. Sample problem 6 x 10 (LL = 507; UL = 3162)
Stopping Rules MIN MAX R MPS
NS LS NS LS NS LS NS LS NS LS NS IS
PPN 873 683 1502 1022 629 339 1272 29 100 100  .hk2 LT
< 20 663 150
| ;+1 - DB
and 845 656 1502 1022 TOT 367 1242 719 200 250 .51 .52
+ +) <
IDj - ol -
In7,, - o7l z 873 663 1502 1022 629 359 1272 769 150 150 .45  .L8
719
71k
MIN, - MIN, . 873 663 1502 1022 629 359 1272 791 150 200 R 47
769
719
< T1k
MIN, - Bd = LL 705
or
MIN, - MIN, . 873 663 1502 1022 629 359 272 791 150 200 .50 .51
. 6
MAX end MAX :((13
i+1 i 71k

105

L



Table 4.8. Sample problem 6 x 15 (LL = 750; UL = LT738)
Stopping Rules MIN MPS
NS LS NS LS NS 1S NS LS NS LS NS LS
i1 ~ % < 30 1152 847 1859 1232 707 385 1h12 9Lkg 100 100 .89 .97
<5 847 150
- - <
IDi+1 - Dl =
and 1095 843 1859 1236 64 393 1hok 917 200 200 .93 1.02
I + +’ <
Diyi =Y
Ip] . - | = 1131 847 1859 1236 728 389 143k 1008 150 150 .94 .99
i+l i 98h
MIN. - MIN. = 1131 847 1859 1236 T28 389 1h3L 1008 150 150 .89 .97
i i+l 981&
MIN. Z B4 = LL
1
or
MINi - MIN1+1 = 1131 843 1859 1236 T28 393 143k 917 150 250 .94 .99
and
MAX - MAX, =

9.
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non-shifting. The range of the distribution of the schedule time is
always much smaller in left-shifting.

From figures 4.2 through 4.10, we find that in some cases, the
most probable schedule (MPS) provides a rough indication about the
nature of the distribution. But, in most of the cases, it does not
provide any good indication. In this respect, the number of "peaks" in
the distribution might be an important parameter of interest to us. A
peak is defined to be a point at which the observed frequency stops
increasing and starts decreasing. If the number of peaks is large, it
becomes difficult to approximate the nature of the distribution by a
single parameter like MPS. Schedules obtained by an improved technique
such as LS will have relatively fewer number of peaks in the distribu-~
tion, though no generalization to this claim can be made. However, in
Monte Carlo sampling related to our scheduling problems, instead of
specifying the most probable schedule (MPS) only, knowledge of the
schedules (mostly more than one) having relatively higher frequency
with their corresponding probabilities will perhaps be more helpful to

predict the approximate nature of the schedule time distribution.

C. Biasing Technigues
In any random sampling, the use of a biasing technique is usually
intended to have an improved subset of the set of all feasible solu-
tions. It is desired that this subset will contain the desired solu-
tion with relatively high probability.
BT1l: This biasing technique refers to the sampling procedure which,

instead of selecting the process at random, selects the one having
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minimum starting time. Referring to the algorithm developed in section

B, let P be the set of all scheduleable operations. Corresponding to

each operation in P, find maxi = max (maximum machine time and maximum

job time), i =1, 2, ..., P. Now find a subset Q = min (mexl, maxé, .
.., maxP). Select one of the operations in @ at random.

Due to a shortage of computer funds, this technique was not
actually tested. But in view of BT3 discussed in Chapter 5, we can
conclude that BT1 should be always better than non-shifting sampling
and perhaps superior to left-shifting in respect to the range of the
distribution. However, this technique will take much longer CPU
time than left-shifting,

BT2: In this technique, after selecting a process by BTl, the
left-shifting criterion is incorporated. BT2 can be expressed as
BT2 = BT1 + LS. BT2 must be at least as good as BTl in any feasible

solution hecause it is a better subset of BTl.

entered in Table 4.9. 1In all the problems, BT2 has been found to be
better than LS with respect to minimum schedule time.

In all the problems, the biasing technique BT2 has the shorter
range. 1t shows that if a single feasible schedule is to be drawn,
this technique will provide a better schedule with a higher probability.

But if we look at the CPU time, left-shifting is always better.
In most of the cases, the CPU time per schedule in the biasing
technique is more than twice as much as that in left-shifting. This is

perhaps due to the fact that in the biasing technique, for each operation,



Table L4.9. Comparison between NS, LS and BT2 (Numbers in the table correspond to stopping rule k)
Sample MIN
Problems NS LS BT2 is BT2 1S BT2 LS BT2
9 x b 68 62 58 37 23 80 80 0.1k 0.31
9 x 6 152 116 112 65 42 120 120 0.32 0.62
15 x b 130 127 126 31 27 ko Lo 0.52 1.1k
6 x 7 561 Lot Lht 242 186 150 100 0.25 0.58
6 x 10 873 663 636 359 294 200 100 0.47 1.19
6 x 15 1131 8hT 827 389 321 150 100 0.97 1.61

88
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we are to apply mex-min principle over the whole set of scheduleable
operations to check for the minimum starting time.

Depending on the size and the structure of the problem, left-
shifting may sometimes be found superior to BT2 with respect to
minimum schedule time. 1In fact as we shall see in Chapter 5, in &
small problem, left-shifting provided a better minimum than BT2. The
better results demonstrated by BT2 in most of the cases should
probably be apprehended because schedules are drawn from a better set
(BT1) than that in left-shifting.

If the CPU time is very critical, left-shifting is always to be
applied at the expense of probable better results. If the scheduler
is more concerned with the better schedule at the expense of higher
CPU +time, BT2 1is a superior choice.

Perhaps the best choice will be to apply a third alternative which
combines both techniques LS and BT2. For each operation, the program
will randomly select either LS or BT2 and process the operation by
that technique. To make a compromise between CPU +time and the better
schedule, we suggest this combination technique. It is expected that
in all cases this will be better than the worse of the two and close
to the better one. With respect to CPU time, this will be better than
BT2 and worse than LS. According to the Judgement of the scheduler,
if he prefers a particular technique, he can assign more weight to it
and apply the combination technique.

In fact, our program has been designed to incorporate all three

techniques. With the following simple changes on the first data card of
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the input stream, any of the three techniques can be applied to a
problem.

Column 19 Column 20

BT: - 1
LS: 1
Combination: 0

Figure U4.11 shows the relative advantage of BT2 over LS.
Figure 4.12 depicts how the combination technique relates with LS
end BT2 for the problem 15 x 4. The table 4.10 shows the improvement

of CPU time by combination technique in problem 6 x 10.

Table 4.10. Combination technique in 6 x 10 problem

LS BT Combination
Minimum schedule time 663 636 639
CPU time/schedule 0.47 1.19 0.8

D. Sample Size and Stopping Rules
Referring to Tables 4.2 through 4.8, we see that different stopping
rules need different numbers of schedules to meet their criterionm,
Usually stopping rule 1 requires fewer numbers of schedules, especially
when a higher (zi+1 - zi) is specified while stopping rule 2 is
relatively slow and the sampling procedure is terminated after drawing

more schedules. However, the latter produces the best results.
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If we are interested in a better minimum at the expense of more
CPU time, rule 2 should be used.

When CPU time is a critical factor, the scheduler can assign
some "reasonable" lower bound for the schedule time and apply stopping
rule 5. The lower bound may be assigned on the basis of the lower
limit (LL) or any estimated minimum. There is a higher probability
that this will give the desired solution ﬁithin a reasonable amount of
time.

For the usual situation, stopping rules 1, 3 and 4 can be applied.
0Of these three, stopping rule 4 is preferred in view of the CPU time
and the better result obtained.

As regards to the sample size, let us observe the relative improve-
ment of the minimum schedule with the increase in the number of sched-
ules (Table 4,11). The numbers in the table are the minimum schedules
(MIN) with respect to left-shifting.

From Table 4.11, gbserve that in most of the cases, 500 schedules
gave a better minimum than that obtained from 100 or 150 schedules.
However, the improvement may not always Justify its worth when CPU
time is taken into consideration. All .the stopping rules usually need
two or more samples to be drawn before the criterion is met. Stopping
rule 2 needs more samples as we observed. Stopping rule 5 is sometimes
faster if a reasonable desired limit is specified. With this informa-
tion, we suggest the following rough guide rules for the sample size to

be specified in the program (Table 4.12).
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Table 4.11. Relative improvement of MIN with number of schedules

Problems Number of Schedules Drawn

50 10Q 150 200 - 500
9x U 62 " 60 58 - 58
9x 6 123 | 116 11k 112 112
15 x b 127 126 - - 126
6x T 503 _ 4ot Lot 491 486
6 x 10 696 683 663 663 652
6 x 15 876 8u7 84T 843 837
Table 4.12. Stopping rules and sample size (single machine)
Stopping Rules Approximate Semple Size

1 (with higher Riv1 " zi) 40 - 60
1 (with lower Bipg - 2i) 30 - ko
2 25 - 35
3 < 35 - U5
4 35 - U5
5 (with no "bound") 30 - ko

5 (with "bound") Lo - 50




9

E. CPU Time

Between different stopping rules, CPU time/schedule does not differ
significantly. This difference is not always consistent.

As we noticed previously regarding CPU time per schedule, there
is not much difference between NS and LS, but there is a signifi-
caht difference between LS and BT. CPU time per schedule is de-
pendent on the number of operations in the problem. It seems that the
algorithm is equally critical on the number of jobs and the number of
machines. However, no generalization can be made unless more sample
problems are tested. Figures L4.13 and h-lh'show the growth in computing

time with the problem size.
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V. HULTIPLE MACHINE ANALYSIS

A. Introduction

This chapter will deal with the systems where multiple machines
can exist in different work centers. This will be the exact repre-
sentation of the algorithm developed in Chapter 2.

As in Chapter k4, differences between the solutions obtained by
left-shifting and non-left-shifting will be studied here with respect
to minimum schedule time, sample size needed, CPU time, distribution
of schedule time, etc.

A short discussion on single machine versus multiple machines
will also be presented.

In addition to the different biasing techniques used in Chapter k4,
we will examine the effect of other biasing techniques and explore
the possibility of some others.

The stopping rules will be discussed in the context of multiple-
machines facilities.

The short notation used in Chapter 4 will also be valid in this
chapter.

With respect to the multiple-machines facilities, it is worth-
vhile to note the followng two observations regarding the number of
machines and operations. Unlike the single machine facilities, the
number of machines and facilities are not the same in "strict"
multiple machine facilities. In the latter case, a problem
of size 6 x T should not be understood as referring to a system

having © Jobs and T machines; it should refer to a system
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having 6 Jjobs and 7 facilities with more than T machines. 1In
our discussion, we will specify a multiple-machines facilities system
by nxf xm, where n, f, and m refer, respectively, to the
number of jobs, facilities and machines.

Regarding the number of operations in multiple-machines facilities,
as mentioned in Chapter 2, some operations will be made "inactive" as
we proceed with the algorithm and will never be processed. Therefore,
in this case, the total number of possible operations in a problem
will be more than the number of "active" operations that are actually
processed during the different iterationms.

In a later discussion in this chapter on single machine versus
multiple machines, we shall see that in a multiple-machines facility,
the difference between the minimum obtainable schedule and the lower
limit (LL) depends on the number of machines within each facility.
For'this reason in our subsequent discussion on left-shifting and non-
left-shifting, we will not use lower limit (LL) to determine a
bound (Bd) to be used in stopping rule function. Thus, stopping
rule 6 will be used instead of stopping rule 5 which can be applied

in the context of an estimated minimum to be discussed in Chapter 6.

B. Left-Shifting and Non-Left-Shifting
The sample problems in Table 5.1 have been considered to study
the different parameters of interest. These problems were also examined

in Chapter 4 for single-machine facilities. So the technological
ordering remains the same as before for each problem. The solution
parameters and variables for the sample problems have been entered in

Tables 5.2 through 5.7. The lower limit (LL) that has been mentioned
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Table 5.1. Sample problems

Sample Probvlem Total Number of Number of
Jobs x Facilities x Machines Operations Active Operations
5x L4 x 10 39 16
9x k4x10 104 41
15 x b x 10 168 68
6x Tx1h 104 L6
6 x 10 x 19 11k 60
6 x 15 x 26 151 99

in each sample problem has been defined as max (g P(i,3)) for all
i, where P(i,)) is the processing time of the Jjob i on the most
efficient machine of the facility Jj. Tables 5.2 through 5.7 indicate
the improvement in the solution by left-shifting in multiple-machines
facilities. As in Chapter 4, this technique is superior to non-
shifting procedure with respect to minimum schedule time, range of
the schedule time distribution, ete.

From figures 5.1 through 5.3, we observe that the multiple-
machines facilities also a single parameter MPS (most probable
schedule) does not provide a very good indication about the nature

of the distribution. 1In this respect, we refer to our discussion in

Chapter L.



Table 5.2. Sample problem 5 x 4 x 10 (LL = 24)
Stopping Rules MIN MAX MPS —
NS LS NS LS NS LS NS LS NS 1S NS LS
(2., - %) <1 35 28 3 50 38 32 37 80 80 -105 -107
- - <
Ip; = Dyl =5
and 33 28 75 50 L2 32 38 120 120 .105 .108
+ + <
Ip; =Dyl =5
o] - oI Z.s 33 28 5 50 u2 32 38 120 120 .105 .107
(Mmi - MIN, +1) = 35 28 73 50 38 32 37 80 80 .105 .107
_LMINi - MIN, ) =
and 35 28 73 50 38 32 37 80 80 .105 .108

(MAX

i+l

- MAXi)

H

T0T



Table 5.3. Sample problem 9 x 4 x 10

(LL = 36)

MIN MAX ) MPS
Stopping Rules NS IS NS IS NS IS NS LS NS s NS LS
(zi+l - zi) <1 55 bk 103 82 48 38 T 62 100 100 .59 .52
- - <
IP; = Diyql = -5
and 50 4 112 83 61 39 76 6k 150 150 .50 .5b
+ + <
[D; = Dy4ql= -5
[p; - D41 Z.s 55 ks 103 8 48 38 77 62 100 100 .h9 .52
LMINi - MINi+l) =0 55 Ll 103 82 48 38 17 62 100 100 .49 .52
(MINi - MINi+1) =0
and 55 i 103 82 L8 38 77 62 100 100 .50 .53
(MAxi+l - MAXi) =0

20T



Table S5.4. Sample problem 15 x 4 x 10 (LL = 38)
MIN MAX MPS T
Stopping Rules NS IS NS IS NS LS NS LS NS LS NS LS
(2,4 = %) <1 93 76 181 138 88 62 113 93 100 80 1.15 1.k
— - <
l i~ Di+l" -
and 93 76 185 143 92 67 131 9k 150 100 1.16 1.46
+ + <
Ip; - Dyl -5
| ;+1|< .5 93 76 181 138 88 62 113 93 100 80 1.1 1.43
(MINi - MINi+l) = 93 76 181 138 88 62 113 93 100 80 1.1 1.k
(MINi - MINi+1) =
and 93 6 181 143 88 62 113 94 100 120 1.15 1.43

(MAX,,, - MAX.)

€01



Table 5.5. Sample problem 6 x 7T x 14 (LL = 379)
. MIN MAX MPS
Stopping Rules N s 5 1s ©Ns Is NS 1S TS TS NS 1S
(2 -2.) <1 4ot L21 1133 692 636 281 791 k6T 80 80 .50 .5k
i+l i 498
- - <
IDi - Di+L| - .5
and 493 415 1167 735 6T4 320 763 L98 120 120 .52 .56
+ + < _
Ip; - Dy, -5
[D7 - D7..| = .5 497 421 1133 692 6T7h 284 791 L6780 80 .50 .5k
i i+l h98
(MIN, -~ MIN, ) = L9t k21 1133 692 674 281 791 46T 80 80 .50 .5Lh
i i+l 498
(MIN, - MIN, ) =
and hg7 W21 1133 692 67k 281 791 L6éT 80 80 .51 .55
498

hOoT



Table 5.6. Sarmple problem 6 x 10 x 19 (LL = 507)
MIN MAX MPS
Stopping Rules NS IS NS LS NS IS NS LS NS LS NS LS
(.., - 2.,) <1 69k 569 1b27 102k T33 LS55 1121 698 80 60 .91 .97
i+l i Th8
819
927
- <
IDi - i+l| =
and 679 556 1521 1107 842 551 1137 T48 100 80 .92 .915
' + + l < _
iDy = D5l 72
o] - 23, b 679 556 1521 1107 8k2 551 1137 TL8 100 80 .91k .973
(M, - MINi+1) = 694 569 1k27 1024 733 455 1121 ggg 80 60 .91 .97
819
227
(MINi - MINi+l) =
and 694 556 1427 1107 733 551 1121 TL8 80 80 .91k .973
(MAxi+l - MAX,) = 0

GoT



Table 5.7. Sample problem 6 x 15 x 26 (LL = 750)
MIN MAX R MPS R
Stopping Rules NS LS NS LS NS LS NS LS NS IS NS LS
(54 = 2.) <1 865 791 1322 1017 457 226 1127 821 60 60 1.61  1.72
5 1231 83l
1301
- <
IDi - Di+;, - .5
and 849 789 1412 1049 563 760 1127 813 100 100 1.63 1.75
+ + < 130k 83k
D, - D, ] - .5
i i+l
o - 27,1 2.5 849 789 1377 1033 528 24k 1127 821 80 80 1.62 1.73
iooTan 83
(MIN, - MINi+l) = 865 791 1322 1017 bsT 226 1127 821 60 60 1.61  1.72
. 1232 83l
1301
(MINi - MINi+l) =
and 849 789 1k12 1049 563 260 1127 823 100 100 1.62 1.73
130k 83k
(MAXi+l - MAXi) =

90T
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C. Biasing Techniques
Biasing techniques (BT1 and BT2) and their combinations with

left-shifting and non-left-shifting have been discussed in Chapter L.
Due to shortage of computer money, all these techniques could not be
examined with multiple-machines facilities. A (3 x 3 x 7) problem
was tested by BT2, LS and their combination. Distributions of
the schedule times have been shown in figure 5.4. We observe that
with respect to minimum schedule time, left-shifting is superior to
BT2, but the latter has a smaller range. However, no firm conclusion
can be drawn from the solution of a single problem. In fact.
from experience with BTk +to be discussed shortly, BT2 should be,
in most of the cases, superior to left-shifting because schedules
are drawn from a better subset.

" Let us now try to explore some other techniques which are unique

to multiple-machines facilities.

1. BT3

'This technigue refers to the sampling procedure which includes
two stages. At the first stage, a scheduleable operation is selected
at random from a facility. Final selection is made at the second
stage on the basis of the minimum starting times corresponding to the
machines of that facility. Referring to the algorithm developed in
Chapter 2, let the randomly selected operation refer to job J and
facility f which has m machines of the same type (they may have
different efficiencies). Corresponding to the operation and its

counterparts, find
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maxi = mex (maximum machine time for machine i and meximum
job time for j) i=1,2, ..., m

Now find a subset Q = min (mexl, mex2, ..., maxm); select one of
the operations in Q at random. In BT1, instead of sampling at ran-
dom, we applied the maex-min criterion over the facilities in which .
scheduleable operations are found. But in BT3, a scheduleable
operation was randomly selected, but the final selection for actual
processing was made after applying the max-min criterion over the
machines of a single facility. We tested only one problem by this
technique. Figures 5.5 and 5.6 show the relative merits of #S. LS. and
BT3. A combination of BT3 with NS and LS can also be examined.

Both in BT1 and BT3, instead of selecting the operation based
on the minimum starting time, biasing can be applied on the minimum
completion time. 1In applying the max-min principle, we have to
consider the processing time of the operation in the respective machine.
As for example, for BT3

mexi = mex (maximum machine time for machine i and maximum
job time for j) + Chi i=1,2, .0.,m

where Chi is the processing time of the operation in machine 1i.

2. BN
In this technique, after selecting a process by BT3, the left-
shifting eriterion is incorporated. BTh cen be expressed as

BTh = BT3 + LS. BT4 must be at least as good as BT3 in any feasible

solution because it is a better subset of BT3.
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Five problems were tested and different parameters have been
entered in Table 5.8 where all the figurés refer to stopping rule u.
In all the problems, we observe that BT4 is superior to 1S except
computer time/schedule. As the range of the distribution is smaller
in BT4, we can expect that specifying a smeller sample size, we
can reduce the CPU time without affecting the solution considerably.
Perhaps this will lower the total CPU time in BTL almost equal to
that in left-shifting. Another alternative will be the combination of
BT: and LS. We did not actually try this combination. Figures 5.7,'5:8‘mi
and 5.9 show the comparison between LS and BT4 in their distribu-

tions for two sample problems.

3. BT2 and BT

We notice that both BT2 and BT4 incorporate left-shifting
ptinciple in their procedures. In each case, schedules are drawn from
a better subset of the set from which schedules are drawn in left-
shifting. BI2 eapplies the max-min principle over the set of all
scheduleable jobs to determine which Job has the minimum starting
time. This technique is analogous to first come--first serve tech-
nique in dynemic scheduling. First come--first serve rules have
been found to be superior to many dispatching rules. BT2 tries to
reduce the waiting time for each job.

On the other hand, BT4, which is unique for multiple-machines
facilities, epplies the max-min principle over the different machines
of the same facility with respect to a single job. For multiple-

machines fecilities, the scheduler might be only interested to see



Table 5.8. Sample problems showing difference between IS and BT4

Total MAX MPS BT,
Sample Problem
Operations LS BTL LS BTA4 1S BTL s BTY 1S BT4
5x4x10 (Identical) 39 25 25 43 25 18 10 32 26 107 ., 107
(Active operatiocns: 16) .
9xhix10 104 51 43 87 75 36 32 66 52  0.52 .99
(Active operations:L1)
(Different from
9x4x10 used in 5,2)
15xhx10 168 76 76 138 108 62 32 93 89 1.0 2.95
(Active operations: 68) '
15x4x10 (Identical 168 69 68 109 95 Lo 27 84 Th 1.4 2.95
(Active operations: 68)
6x10x19 114 569 541 102k 804 455 263 698 . 627 0.97 1.92
(Active operations: 60) ghg
19

927

91t
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that if a job is waiting to be served in a facility, which of
the machines of the facility can start the job earliest. This is what
is accomplished by BTh.

We did not actuélly compare BT2 and BTW with any sample
problem. With respect to computer time, BT4 should have an ad-
vantage over BT2 because BT2 applies the max-min principle
over the whole set of scheduleable operations while BT4 applies this
principle over a single facility. A combination of BT2 and BTL

might also be an interesting technique to look at.

4. Multiple left-shifting (MLS)

Referring to the left-shifting principle or BT4, suppose a
particular operation is randomly selected. Instead of processing
the operation by left-shifting technique or applying the max-min
principle of BT4, we apply the left-shifting principle over this
operation and its counterparts and then choose the operation which
can start earliest. In this technique, the computer logic will be
more complex, but it will ensure solutions to be at least as
good as that either by left-shifting or by BT4 because solutions by
this technique (MLS) will always constitute a better subset
of both the sets of solutions by LS and BT4. Perhaps the best
biasing technique (BT6) will be to choose the operation by BT1 and
then apply multiple left-shifting (MLS) within that facility.
This will be undoubtedly better than BT2 because left-shifting is
applied over all the counterparts. Here two biasing techniques are

applied in series. First, it considers all the jobs to determine
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which job can start fast (BT1) and then put the operation in the
machine which can start processing first (MLS).

No computer progrém has been written for MLS. FPFurther research
will be needed in exploring the different aspects of above biasing
techniques and development of better techniques in order to increase
the efficiency of the Monte Carlo sampling procedure used in this
dissertation,

We summarize in figure %10 the different biasing techniques

arranged downward in the order of their increasing efficiency.

D. Single Machines Versus Multiple Machines
In multiple-machines facilities, different machines of the same
facility can remain éimultaneously engaged for different jobs. So
as the number of machines increases in different facilities, the lower

1imit (LL) of the schedule times will be less dependent on I P (i,j)

and it may be defined as mentioned earlier as max (ZP(i,j))

J.

orocessing time of the job 1 on

for all i, where P(i,3) is the
the most efficient machine of the facility Jj. Consequently, in
multiple-machines facilities, by increasing the number of machines, it
is always possible to have a feasible situation having the schedule
time equal to the lower limit. But considering only this particular
aspect, one should not be motivated to shift from single-machine
facilities to multiple-machines facilities. Unless the machine utili-
zation factor is taken into consideration, even by reducing the span
of the schedule time by shifting to multiple-machines facilities, the

overall cost may not justify the change. Let us consider two sample

problems (5 x 4) and (15 x 4) analyzed in Chapter 4 and their
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multiple versions (5 x 4 x 10) and (15 x 4 x 10) analyzed at the
beginning of this chapter to see the increase in the idle time of

the facilities when single-machine facilities are arbitrarily changed
to multiple-machine facilities. Figures 5,11 and 5,12 display the
Gantt charts of the two problems in single-machine facilities, and
figures 5,13 and 5,14 give the corresponding Gantt charts of their
multiple versions. For the sake of discussion let us consider the
schedule time to constitute a cycle and we will determine the portion
of the cycle time each machine remains idle. From the Gantt charts,
idle time for each machine is calculated and entered in Table 5.9.

As mentioned in Tables 5.2 and 5.4, the lower limits for the two
problems (5 x 4 x 10) and (15 x 4 x 10) are 25 and 38, respec-
tively. From Table 5.9, we can make the following observations.

(1) sSwitching from single machine facilities to multiple
machines facilities moved the schedule times towards their lower
limits in both problems, but the shift is more considerable in the
problem having more jobs (15 x 4 x 10).

(2) In both the problems, idle time/cycle time increases in
each original machine, and additional idle times occurred due to
additional machines in each facility.

(3) Except for Al, A3 and B2, idle time/cycle time is
considerably less in the (15 x 4 x 10) problem.

(4) An approximate idea regarding facility utilization can be
obtained considering the idle times of the machines within each facility.

Considering cost/idle time as the same for each machine (which is in
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Figure 5.12, Gantt chart for problem 15 x 4 (single)
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Figure 5,14. Gantt chart for problem 15 x 4 x 10 (multiple)
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Table 5.9. Single machine vs multiple machines

Single-Machine Facilities Multiple-Machines Facilities

i . Idle Time/ . . Idle Time/

Cycle Time Idle Time . Cycle Time Jdle Time Cveole Time
Machines Gycle Time 15xhx ' 15xhx 'JL—-__—%SXhX
Sxk 15xh Sxh 15xk S5xb 15xk  5x4x10 10  5xkx10 10 5xkx10 10
Al 0 127 11 26 0.37 0.20 28 76 1k ko 0.50 0.53
A2 28 76 20 1k 0.7T1 0.18
A3 28 76 17 61 0.61 0.80
Bl 30 127 0 1 0.00 0.01 28 76 18 2 0.67 0.03
B2 28 76 Y 1k 0.14 0.18
C1 30 127 21 32 0.70 0.25 28 76 20 27 0.71 0.36
ce 28 76 2k 25 0.86 0.33

D1 30 127 19 69 0.63 0.54 28 16 23 52 0.82 0.59
D2 28 76 22 38 0.79 0.50
D3 28 76 28 60 1.00 0.79

LeT
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fact an oversimplified assumption), let us define an approximate

measure of the facility utilization by

m
I (Cycle time--Idle time for machine i)
_i=1
u, =
mf ¥ cycle time
Ug = utilization factor for facility f
m, = number of machines in the facility f

Teble 5.10 shows the utilization factors for each facility. These are

calculated from Table 5.9. F mentioned in Table 5.10 refers to

the overall system.

Table 5.10. Utilization factor for facilities

Sinple-Machine Multiple-Machines
Facilities Facilities Facilities
5 x4 15 x & 5x 4 x 10 15 x 4 x 10
A 63 80 39 50
B 100 99 61 89
c , 30 75 21 66
D 37 L6 13 3L
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The utilization factors in multiple-machines facilities for the
problem (15 x 4 x 10) are consistently greater. This is expected
because the machines are to process more jobs and thereby have less
idle time. In Table 5.10, if we concentrate on the problem (15 x b x
10) in multiple-machines facilities, the difference in the utiliza-
tion factors for the different facilities can be explained if we con-
sider the increase in the number of machines in each facility and the
number of operations each has to perform. The processing times were
drawn from a random number table and, therefore, there should not be
any bias to any particular facility with respect to processing
times. From Gantt chart (figure 5.12) the number of operations per-
formed in each facility was calculated. These are entered in

Table 5.11

Table 5.11. Number of operations and increase in machines

Nunber of Increase in U,'s for 15 x 4 x 10
Facilities Operations Machines (from Table 5.10)
A 18 2 50
B 20 1 89
c 16 1 66
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From Table 5.11, we can conclude that the utilization factor for
facility B is highest because of the maximum number of operations
in this facility and the fewer number of machines. By similar
reasoning, we can justify the worst utilization of the facility D.
The relative advantage of the facility over the facility A can be
explained by the likewise argument.

On the basis of the above discussion on single machine versus
multiple machines, we make the following remarks.

The very first step that occurs when shifting from single~
machine facilities to multiple-machines facilities is to find which
area has the potential need for change. In intermittent industries,
usually every job needs some common operations and, therefore, the
possible needs for change to multiple-machines facilities should more
likely arise from general purpose machines rather than special purpose
machines, From past experience management should realize mostly
vwhich jobs are arriving and the area of greater accumulation of in-
process inventory.

After management is convinced about the potential need for
change in some particular area, the next question which arises is
how many additional machines are required. From past records of
Job arrival, management should be able to roughly calculate the
expected number of different jobs in the shop at a particular time.
On the basis of this set of jobs, computer simulation may be carried
on to determine the "optimum" number of machines needed at a particu-

lar facility. A cost function must be defined and, varying the number
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of machines, a trade~-off point should be determined where dollars
saved by reducing the schedule time and in-process inventory can at
least justify the increased expenses due to cost, idle time, mainte-

nance, etc., of the additional machine wunits.

E. Sample Size and Stopping Rules

Referring to Tables 5.2 through 5.7, we notice that like single
machine facilities, different stopping rules need a different number
of schedules to meet their eriteria. In the first three sample prob-
lems, stopping rule 2 did not show any improvement in the minimum
schedule though it tbok more CPU time. This may be due to structure
of the problem itself. Actually, the algorithm converged earlier for
these problems and higher number of schedules also could not provide
any better result as shown in Table 5.12.

As mentioned earlier, the difference between the minimum
schedule time and its lower limit (LL) depends on the number of
machines in each facility. Usually this difference increases rela-
tively with the increase of jobs in the system. Because at present
we do not have an exact relationship between this difference and the
structure of the problem, we suggest stopping rule 6 instead of stopping
rule 5. Since a "reasonable" lower bound for multiple-machines
facilities is not available, stopping rule 5 cannot be applied even
if CPU time is a critical factor.

For the usual situation, as in single machine facilities, stopping
rules 1, 3 and 4 can be applied. Of these three, stopping rule U is

preferred in view of the CPU time and better result obtained.
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Table 5.12. Relative improvement of MIN with number of schedules

(LS)
Sample Problems Number of Schedules Drawn
40 60 80 150 250 500
5% kx10 28 - 28 - 28 26
9x 4x10 55 - 51 L - Ly

(used in 5.3)

15 x b x 10 '8h 76 76 - 76 76
6x Tx1lb 435 - 421 k15 - 412
6 x 10 x 19 569 569 - 556 552 541

6 x 15 x 26 813 791 789 789 781

Considering the sample size, as in Chapter 4, let us observe
the relative improvement of the minimum schedule with the increase
in the number of schedules (Table 5.12). The numbers in Table 5.12 are
the minimum schedules (MIN) with respect to left-shifting. From
Table 5.12, we observe that in most of the cases 500 schedules gave a
better minimum than that from 80 or 150 schedules, but the improve-
ment may not justify its worth where CPU +time is taken into con-
sideration.

Before we specify the sample size for each stopping rule, let
us consider the four sample problems from Table 5.12 to show the rela-
tive improvement of "MIN" when BT4 is applied. Table 5.13 shows

this improvement.
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Table 5.13. Relative improvement of MIN by BT4

Sample Problems Number of Schedules Drawn

40 50 80 100 200

5x L4 x 10 (Identical) 25 - 25 25 -
9x hx1lo Ly 43 - 43 43
(used in 5.3)
15 x 4 x 10 (Identical) - 68 - 68 68
6 x 10 x 19 551 - 541 - 541

Considering Tables 5.12 and 5.13, it is very obvious that dif-
ferent simple sizes should be specified for LS and BT4. In fact,
in BT4, smaller sample size should be used because, in this technique,
convergence of the solution is faster and the quality is also better.
This will compensate to a great extent the larger CPU time/
schedule in BTh.

All the stopping rules need two or more samples to be drawn before
the criterion is met. Stopping rule 2 needs more samples. With this
above information, in Table 5.14, we suggest a rough guide set of rules

for the sample size to be specified in the program.
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Table 5.14h. Stopping rules and sample size (multiple machines)

Stopping Rules Sample Size
LS BTY
1 40-50 20-30 -
2 _30-h0 15-20
3 30-40 15-25
L 40-50 20-30
6 30-40 15-25
F. CPU Time

As in single-machine facilities, there is not much difference
in CPU time/schedule between left-shifting and non-left-shifting.

The difference between the different stopping rules with respect
to CPU time/schedule is not very significant. However, on the
average, stopping rule 2 tekes relatively more CPU time. Stopping
rules 3 and 6 take almost the same time. Stopping rules 1 and
4 usually require the least time on the average.

As mentioned earlier, CPU time per schedule in BT4 is almost
double that in left-shifting.

In multiple-machines facilities, CPU time per schedule is
less than that in corresponding single-machine facilities. This is
due to the fact that the "active" operations are less than the total

possible operations in multiple-machines facilities.
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Figures 5.15 through 5.17 show the increase in CPU time/

schedule with the increase in problem size in different techniques.
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VI. MINIMUM BOUND ESTIMATION

A. Introduction

For a large combinatorial problem, it is very difficult to obtain the
true optimal solution. Different techniques, such as the Monte Carlo
sampling procedure used in this dissertation, provide near optimal solu-
tions in most cases. For practical purposes, the near optimal solutions
may do Just as well., However, in this case, the scheduler might be in-
terested in knowing the different information regarding the minimum
schedule obtained as to its "closeness" to optimal or some "estimated
optimal" schedule.

The different stopping rules used in this dissertation provide some
justifications to the scheduler to believe that the best schedule so ob-
tained should be close to the "best" obtainable schedule by the algo-

rithm. Further information regarding the minimum schedule can be provided

estimate and x 1is the value of the schedule so far obtained, then, as

we indicated in Chapter 3, the probability of further improvement and the
difference (x - xmin) will provide still other dimensions for decision
making. Further, the estimated minimum, xmin, can be used as & basis

for the bound Bd to be used in stopping rule 5 discussed in Chapter 3.

This chapter will concentrate on estimating the minimum schedules

(xmin) for different problems and interpreting other associated parameters
with respect to those problems. Extreme value theory, which has its wide

application in a variety of meteorological and engineering problems, is the
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basic mechanism for estimating the minimum schedule. Gumbel (1958) pro-
vided a detailed description of the underlying theory along with the three
types of asymptotes associated with it.

McRoberts (1971) first demonstrated the usefulness of extreme value
theory in plant layout problems. In this application, the third asymptotic,
which is the three parameter Weibull distribution, was used as the basis
for estimating the minimum bound value. The third asymptote for the smallest
values arises when the underlying population distribution is bounded from
below. In this dissertation, the procedure as outlined in the above
paper will be followed for estimating the minimum bound value.

There are two basic hypotheses established in applying the theory
to the combinatorial optimization problems (Bae, 1972):

(1) The near optimal values resulting from some powerful algorithmic
treatment are equivalent to the smallest values of random samples of a
large size.

(2) The Weibull distribution "adequately" describes the behavior
of these smallest values.

The second hypothesis takes advantage of the fact that a Weibull
distribution provides some flexibility and absorbs possible inaccuracy
in describing the behavior of the random variable near the bounding value
(Bae, 1972). Empirical studies of the application of the Weibull to the
combinatorial problems have verified its applicability (McRoberts, 1966).
The distribution is a2 mathematical function desecribing the behavior of the
lowest (or highest) values taken from samples independently drawn from a

parent population. The function itself is independent of the parent
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distribution function and has the distinet advantage of having as one of
its parameters, the boundary value of interest (McRoberts, 1971).
The Weibull function describing the behavior of the extreme-value

statistics 1s in the cumulative form (Gumbel, 1958),
F(X) = 1 - exp {- [(X - &)/(v-2)1%) (1)

where
X = criterion or the smallest sample value;
F(X) = the probability that the xmin is equal to or less than x

e = location parameter or the bounding value, i.e., a constant equal
to the lowest value of xmin;

V = a constant parameter indicating the value of the variable such
that the probability that xmin 1is equal to or less than V
is approximately 0.63 referred to as the characteristic
smallest value in extreme-value theory;

K = a constant parameter indicating the shape of the distribution.
The distribution will be positively skewed, symmetrical, or nega-
tively skewed, depending on whether K 1is less than, equal to,

or greater than 3.28,

The different parameters of the Weibull distribution have been shown in

figure 6.1 /—\K43'7-8

f@g F (%)

Xmn=e X \Y X

Figure 6.1. Parameters in Weibull distribution
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When the double logrithmic transformation is performed on (1), the

result is

In In [1 - F(x)]'1 =KIn (X - e) - K Ln(V - e) (2)

Since this is in linear form, the plot of In(X - e) against

-1

LNLN[1 - F(X)] will be a straight line with slope 1/K if e 1is

properly selected. In estimating the parameters with sample values by the
method of sum of squares, it is necessary to vary the bound "e" until

the sum of squares of deviations in the linear regression becomes minimum.
The characteristic value V 1is estimated with the intercept of the verti-
cal axis computed during the regression. In this dissertation, for each

value of e, the corresponding parameters K and V were found by using

TARSIER progran.

B. Analysis
The figures 6.2 and 6.3 show the logarithmic plots of data for estimat-
ing Weibull parameters for two problems 6 x 15 (LS) and 6 x 10 x 19 (LS).
Better estimates would be found if we utilized more values of e (instead

of three) or used the TARSIER program for all three parameters.

Figures 6.4 and 6.5 show the cumletive sample distribution
for the problem 6 x 15 (LS and NS).

Table 6.1 shows the different paramgteré with respect to Weibull
distributions corresponding to five problems. For each problem the param-

eters have been estimated for NS and LS and only in two cases for BTL.
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Teble 6.1. Sample study using the Weibull distribution

147

Parameters

Problems .
MIN(X) LL esXmin F(X) K R v
(for extreme values)
—NS 1152 750 900 0.09 5.5 29} 1280
6x15
LS 847 750 760 0.059 3.98 163 936
NS 130 126 118 0.0086 4.3 37 152
15xh
LS 127 126 - - - - -
~NS 55 36 L9 0.006 4.92 21 66
9xhx10 [LS 51 36 43 0.05 4.8 11 58
BTL 43 36 38 0.045 3.52 10 50
~NS 92 38 79 0.015 5.4 39 107
15xkx10 }LS 76 38 T1 0.005 3.7 2k 92
BTh 76 38 69 0.054 3.5 13 85
NS 682 507 612 0.007 ) Loo 8L0o
6x10x1
LS 625 507 575 0.062 2.8 241 708




148

In Table 6.1 we observe that in all cases we get a better estimate
by LS than NS with respect to different parameters. The estimate
by BT seems to be the best of all the methods. This is consistent
with our intuition. The value of K is largest for NS because this is
relatively a poor sampling procedure. The probsbility of improvement
F(X) 1is smaller in some cases for NS Dbecause the distribution has a
loager left tail for a higher value of K. 1In Table 6.1, corresponding
to the problem 15 x 4, no parameter'was estimated for LS because among
th2 schedules drawn for estimation there was one schedule having the
schedule time equal to the lower limit. Realistically, estimated
lower bound cannot be less than the lower limit (LL). Corres-
ponding to the same problem for NS, the estimated lower bound was
found to be below the lower limit. Therefore, the probability of
improvement F(x) was found on the basis of lower limit and not the

estimated value.

A large K value accompanied by a long left tail is an indication

of weakened sampling method. Where K is as large as 5 or 6, the esti-

mated lower bound may lie well below the best one found. If this happens,

a search for a better schedule should be carried out. The effect of

the slope of the distribution is illustrated in figure 6.6. The variate

(X - e) is standardized to give a better comparison in the distributions

having different characteristic values.

If more samples are taken as extreme values, the shape and location

parameters can be better estimated. But because of the computer time used

in generating samples, a decision must be made to obtain or not obtain a

better estimation at the expense of an increase in computation time. Let
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N be the total number of samples drawn and n the sample size in which an
extreme point is selected. As we increase the value of n, we should
expect a better estimate. But if E- decreases beyond a certain value, the
number of extreme points may be so small that a reasonable analysis is not
possible. PFor a fixed value of n if we increase the value of N,
dispersion of the extreme values will be more and estimation may thus be
affected. It seems that there should be a particular value of %' for
which a better estimation of the parameters is ensured. However, very
small values of N will give a poor estimate,

In Teble 6.2, the values of the different parameters have been cal-
culated for various values of N and n with respect to a 5 x & prob-
lem. The numbers correspond to & particular value of e. We see that as
we increase the value of n, we get a better estimate with regard to
the skewness of the distribution. However, from our results we could not
come up with any generalized conclusion. Increasing the efficiency of the
sampling procedure to get a good estimate by fixing an "optimum" %- is
one of the critical and important aspects of the study of Weibull
distribution. With different values of ga if the TARSIER progranm is
usel for different problems in the estimation of the Weibull parameters,
some idea may be obtained regarding a good value of gu

If a pood estimate is obtained, the scheduler may use this as a basis
for finding the bound Bd to be used in stopping rule 5 discussed in

Chapter 3.



Table 6.2, Parameters for different number of samples (N) and sample size (n)
0 i 200 400 500 600
vV =29 vV =29 vV = 29 V =29
K = 3.53 K = 3.01 K= 2.6 K= 3.3k
> F(X) = .02048 F(X) = .03597 F(X) = .05586 F(X) = 02517
8S = 0.1764 88 = .2618 sS = .2021 8s = AT
vV = 27 vV = 27 V = 27 V=27
= 3.1 K = 3.00 K= 3.00 K= 3.19
Ss = .22 88 = .153 Ss = 143 8s = 21
vV = 26 vV = 26 vV = 26 VvV = 26
XK= 2.8 K= 2.75 K= 2.75 K = 3.18
20 F(X) = .27481 F(X) = 27957 F(X) = 27957 F(X) = 24076
8Ss = .2h7 88 = .25 ss = .253 ss = .284
v = 26 vV =26 vV =26
K= 3.92 K= 3.85 K = 3.95
2> F(X) = 18457 F(X) = .18935 F(X) =  .18256
88 = ,10h Ss = 0.11 Ss = 0.12

6T
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VII. TRUCK ROUTING ALGORITHM

A. Introduction

The classical transportation model represents shipping schedules
that minimize the cost of shipping products from origins to destina-
tions. Due to the very nature of its formulation, this model when
applied to the trucking industry faces some basic problems. In
particular, various types of information such as how many loads to be
taken each day, how to return from each delivery, how to minimize the
cost of the trips when the truck is travelling empty are usually not
included in the basic transportation model. This necessitates some
modification of the model before it can be a useful tool for a trucking
firm. The purpose of the modification is to minimize the total travelling
time of a group of trucks to satisfy a given set of demands and to
determine the "exact" route each truck should follow on each day.

The basic situation to which we will apply a modified form of
the scheduling algorithm, explained in Chapter II, is one where a
trucking company needs to ship one bulk product such as oil, gasoline,
or cement from m different origins or warehouses to n destina-
tions. Our objective is to produce a schedule which will give the
"exact" route each truck is to follow so that the total travelling time
of all the trucks is minimized. Rach route will begin by leaving the
trucking terminal to go to some origin and end by returning to the

terminal from some destination.
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B. Mathematical Model

Kammin (1976) developed a mathematical model of the above situa-
tion for arriving at an optimal solution. Befére we discuss a short
version of this mathematicsl model, let us look into the following
basic assumptions under which it is constructed (Kammin, 1976):

(i) The trucking firm has one terminal to maintain and refuel its
trucks. Each truck must start from this terminal in the morning and
return to this terminal et the end of the day.

(ii) Only one type of product is shipped. Therefore, a truck is
ready to be reloaded as soon as it is emptied.

(iii) The origins and destinations are close enough to each other
so that more than one delivery can be made in one day.

(iv) The trucks will be routed so that each complete route can
be accomplished in one shift of eight to twelve hours.

(v) The total number of loads of the product available at the
origins is equal to the total number of loads required at the
destinations.

(vi) Minimizing the time required to satisfy a set of demands is
equivalent tc minimizing the cost of satisfying the demands.

Let us now discuss the objective function and different constraints

of the mathematical model for the modified transportation problem.

1. The objective function

r n m n m

m
2 I I d ...+ L ew + I dv._ (1)
k=1 J=1 i=1 j=1 q=1 HATE 4o TR L) 3 gk

o3

Min +
13519k
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the number of loads delivered fromorigin i to desti-

nation J on the kth day,

the time it takes to deliver one load of product from

origin i to destination j,

the number of empty trips from destination J +to origin

i on the kth day,

the time it takes to travel from destination J to origin i,

the number of trips from the terminal to origin i on

the kth day,

the time it takes to travel from the terminal to origin i,

the number of trips from destination J back to the

terminal on the kth day,

the time it takes to travel from destination J back to

the terminal.

2. Supply and demand constraints

k=1

i=l

o]
i
o
T
1}
(=
-
=
-

(3)
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ahers:

the number of loads available at origin i,

o’
il

the number of loads required at destination J.

3. Routing constraints

It is necessary that the solution for one day, i.e., one specific
k, should be a route that can be actually driven by a truck. The
truck must start at the terminal, alternate between origins and desti-
nations, and return to the terminal from some destination at the end of
the day. A set of constraints from (4) to (7) insures that these

requirements are met.

m
T Wi T 1, k=1, ..., r (%)
s
n
Z \'r =l’ k=lg ouo,r (5)
=1 9%
n n
E X. = 2 y,. +W i=l, o",m
=1 ijk 3= ijk ik (6)
k=1, ..., n
m m
b . = 3 A v j=19 veey 1N (7)
i=1 ijk i=1 ijk Jk
k=1, ..., n

The sets of constraints (6) and (7) specify that for any given

day and one specific origin or destination, the number of arrivals equals
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the number of departures of the truck.

4. Balance constraints

It is considered in the model that the hours travelled per day are
limited and the time driven each day is kept fairly consistent by the
following constraints:

n m

z z
J=l i=1

X9k m +1, k=1, ..., T (8)

5. Subtour constraints

One more type of constraint is required for the above mathe-
metical model to produce a workable solution. A subtour is a complete
loop in a route that is not connected to the rest of the route. The
set of constraints (6) and (7) can also be satisfied by such a
loop. So these subtours must be prevented since a truck cannot follow
a route that contains a subtour. Instead of discussing the different
subtour constraints of the model in this dissertation, we simply

refer to Kammin (1976).

C. Motivation for Monte Carlo
Again referring to Kammin (1976), the following three problems
provide us some information regarding the number of constraints and

variables for the above mathematical model:
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Problem 1. Problem 2. Problem 3.
(2 x 2 x 10 x 20) (3 x 3 x 10 x 20) (4 x 3 x 10 x 20)
2 origins 3 origins } origins
2 destinations 3 destinations 3 destinations
20 loads 20 loads 20 loads
10 trucks 10 trucks 10 trucks

Table 7.1l shows how the number of varisbles and constraints
increase with problem size. In fact, these numbers depend on the number
of origins, number of destinations and number of trucks. With a
slizht increase in the problem size, subtour constraints increase at
a very high rate. Though the mathematical model would give an optimal
solution, depending on the problem size, the number of variables and
constraints may be so high that it will not be economical with
respect to the resources needed for computer time. This aspect of
the mathematical model motivated the use of the Monte Carlo technique
which can generate many schedules within a very short time. It is
expected that this technique will provide us a near optimal solution
which can justify its worth against an optimal solution which requires
much more computer time. Furthermore, the Monte Carlo technique, as
we shall see later, is more flexible and easier to apply under dif-
ferent situations. In the rest of this chapter, we will concentrate
on developing a Monte Carlo algorithm which will be suitable for a truck-
ing indﬁstry as mentioned earlier and illustrate the algorithm with

different examples.
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Table T.1l. Number of variables and constraints

Parameters Subtour Due to
Problem of the model excluded subtour Total
1 Variables 120 Lo 160
(2 x 2 x 10 x 20) Constraints 65 80 145
2 Variables 240 90 330
(3 x 3x10 x 20) Constraints 96 360 456
3 Variables 280 120 400

(4 x 3 x 10 x 20), Constraints 107 720 827
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D. Development of Algorithm
Let us consider a simple problem having two origins 01 and 02,
two destinations D1 and D2, one terminal T, two trucks and three
loads. Let us also assume that truck 1 will carry 1 load and truck 2
will carry the other two. The following deata matrix gives the other

relevant information.

Table 7.2. Data matrix for a sample problem (2 x 2 x 2 x 3)

T 0l 02 D1 D2 ai*
T 3 Y 3 6
01 (Time /cost matrix) 2 6 2
02 7 b 1
*% 1 " A
b [ ]
J
*
8 = number of loads available at origin i, (i =1,2)
*¥
bJ = number of laods required at destination j, (j = 1,2)

The purpose of the algorithm will be to define a route for each
truck so that the total travelling time becomes "minimum" under the
sbove limitations. Each route starts at the terminal (T) and ends
at the terminsl.

Before we attempt to modify the algorithm of Chapter 2 to solve the

above transportation problem, we have to define the problem in the context
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of a multi-machines multiple facilities system. ﬁere, origin refers
to a facility in which two origins 01 and 02 refer to the two
machines. Similar interpretation holds for destination and terminal.
For the sake of illustration of the algorithm, origins, destinations
and terminal will refer to facilities 1, 2, and 3, respectively.
Trucks refer to the respective jobs to be processed. The travelling
time for a truck from a previous facility refers to the processing time
with respect to the present facility. As an example, if truck 1 takes
two hours to travel from the terminal to origin 1, then in terms of the
scheduling algorithm, it will be stated as follows: processing time
for job 1 in machine 1 of facility 1 is two hours.

In the transportation problem, more than one truck can travel
simultaneously from one facility to another. In a scheduling algorithm,
it means that more than one job can be simultaneously processed in a
single machine. This aspect along with the different limitations in
the transportation problem discussed at the beginning of this section
necessitates the modifications of the algorithm developed in Chapter 2.

At this stage, the notation that will be used in the algorithm to
specify different operations can be better explained if we define the
transportation problem as a linear graph. Referring to the problem
stated earlier and considering for the time being infinite capacity and
demand at each origin and destination respectively, we can define the
route of each truck independent of the other by two linear graphs as

shown in figures 7.1 and T.2.
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Figure 7.1l. Possible routes for truck 1

Figure 7.2. Possible routes for truck 2

Pictorial representations of the precedence relations of technological
and scheduling orderings have been completely defined by the network
diagrams. We will denote each node of these linear graphs by 5
integers (ijkm), where

i: facility (origin, destination or terminal)

j: machine within the facility (0l or 02 if the
facility is the origin, etc.)

k: Jjob to be processed (whether truck 1 or truck 2)

2: 2th time job k is in facility i (highest value
of % 1is the number of loads a truck can carry)

m: machine within the previous faeility the truck is
coming from

Thus, for example, in figure 7.2, let us refer to the operation with

an asterisk (¥) on it. Here
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Facility: destination => 1 =2
Machine: destination 1 => j =1

Job: truck 2 => k = 2

Second time truck 2 1is in facility 2 (destination), so & =2

Machine of the previous facility the truck is coming from is 02, so m =

So the operation will be denoted by (21222). It is to be noted that
each operation in the algorithm developed in Chapter 2 was denoted by
I integers instead of 5.

The algorithm to be developed here differs from that in Chapter 2
not only in the logics, but also in structure. Here we have to add one
more column CLO, the figures therein indicate the number of loads
available at each origin or required at each destination. At the be-
ginning of each schedule the entries in CLO should be initialized.
The other columns have the identical meaning as that in Chapter 2. It
should be noted that the concept of left shifting is meaningless in a
transportation problem because more than one truck can come simul-
taneously to any facility and the operation will always start at the
max job time.

Let us now discuss the different steps needed in the computer
program for generating a feasible route for each truck. As before,

this program can handle 503 operations and 1500 schedules.

2

Step 1. Resolving or initializing: Resolve the data and make the proper

entry to CLO and to each of the arrays from ICl1 to 1IC7. If any

schedule is already found, reinitialize all the entries.
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Step 2. Randomization in selecting a process: Check IC3 to see

whether there is any zero entry in any row. If no zero entry is found,
it implies that a feasible route has been obtained for each truck and
step 6 follows. Otherwise, count the number of zeroes and select one

of the processes at random. IFIND is the row selected by randomization.

Step 3. Processing the operation: Process the operation at the present

maximum job time. Put this value in IC6. To this value, add the entry
in IChk and put it in IC7. Find the meximum entry (MAXM = IMAX) in
IC5 corresponding to the machine. Make MAXM = MAXM + 1 and put it

in column 5. If MAXM is not equal to the entry in CLO, turn the
switches from O (or 1) to -1 corresponding to IFIND and its

counterparts and then proceed to step 5. Otherwise, go to step L.

Step 4. Blocking the machine: Multiply the entry in CLO by -1 and

turn all the switches in IC3 corresponding to the machine to -1. It

means no more new entries are possible in any column for this machine.

Step 5. Operations to follow: Check IC2. If there is no entry

corresponding to IFIND, go to step 2. Otherwise, corresponding to each
operation, check the entry CLO, If it is negative, do nothing and go to
step 2. Otherwise, turn the switch in IC3 from 1 to 0 for the

corresponding operation and go to step 2.

Step 6. Schedule time: Add all the entries in IC7 corresponding to

the terminal. This is the total travelling time CT7 for all the trucks.
If C7T 1is less than or equal to the best previous C7, write out this

tableau.
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Step T. Stopping rule: Update NPROB (number of feasible solutions)

by NPROB = NPROB + 1. If NPROB is not & multiple of the sample
number specified, go to step 1. Otherwise, call the desired stopping
rule and check the eriterion. If it is not met, go to step 1. Other~

wise, proceed to the next step.

Step 8. Printout: Print all the travelling times found so far in

descending order. The program is terminated at this point.

Before we conclude this section, let us summarize some of the
differences between the algorithm developed here and the one in
Chapter 2.

(i) Each operation in this section is denoted by five integers,
while in Chapter 2, it is denoted by four integers.

(ii) In order to keep track of the availabilities of the origins
and requirements at destinations, an extra column CLO is needed in
transportation algorithm.

(iii) In Chapter 2, the operation is processed either according to
the left-shifting principle or at max (maximum job time and maximum
machine time). But in the transportation algorithm, the operation is
always processed at the maximum job time.

(iv) Instead of selecting one operation at random in CL2 in
Chapter 2, in the transportation algorithm sll the operations are
taken into consideration, checked with the respective entries in CLO
and adjusted accordingly. If one operation is selected at random, then

some routes may not qF completed at all.
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(v) In step 6 of the algorithm in Chapter 2, the highest entry in
ICT 1is the schedule time, while the sum of the entries in ICT

corresponding to terminal is the total travelling time of gll the trucks.

E. Iteration Procedure

Referring to the discussion in the previous section, let us now
proceed to apply the algorithm to the problem stated at the beginning
of section D.

In Table 7.3, the problem has been defined completely in algo-
rithmic notations, showing the technological orderings between the opera-
tions. The processing times have been entered in column k.

To start with, we see that certain operations are scheduleable;

i.e., there are O entries in CL3 corresponding to these operations.

Iteration 1: From the scheduleable operations 11111, 11211, 12111,

12211, let us randomly select 11111. Truck 1 was at the terminal and

so the maximum job time MJM = 0. So, starting time is 0; the comple-

tion time is O + Ch = 0 + 3 =3, The Index corresponding to IFIND in
IC5 1is increased by 1. So MAXMJ = 1.

The entry in CLO corresponding to the machine (origin 1) is 2.
So, MAXMJ # C0 (entry in CLO) which implies we turn the switches in
1C3 corresponding only to 11111 and its counterpart 12111 from
0 to ~l.

In column 2 corresponding to IFIND, there are two operations,

21111, 22111. The entries in CLO for destinations 1 and 2 are

positive and so the switches in IC3 corresponding to 21111 and 22111
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Table 7.3. Iteration O
CLO CL1l CL2 CL3 CL4 CL5 CL6 CLT7
11111 ~ Origin 1, Truck 1 21111, 22111 0 3 0 0 0
11211 21211, 22211 0 3 0 0 0
2 11221y + Origin 1, Truck 2 21221, 22221 1 2 0 0 0
11222 21221, 22221 1 6 0 0 0
12111 -+ Origin 2, Truck 1 21112, 22112 0 L 0 0 0
1 12211 21212, 22212 0 L 0 0 0
12221 } » Origin 2, Truck 2 21222, 22222 1 T 0 0 0
12222 21222, 22222 1 L 0 0 0
21111} Destination 1, 31111 1 2 0 0 0
-5
21112 Truck 1 31111 1 T 0 0 0
1 21211 11221, 12221 1 2 0 0 0
21212 Destination 1, 11221, 12221 1 7 0 0 0
21221t -+ Truck 2 31211 1 2 0 0 0
21222, 31211 1 T 0 0 0
22111} , Destination 2, 31112 1 6 0 0 0
22112 Truck 1 31112 1 4 o 0 o
22211 11222, 12222 1 6 0 0 0
2 e e
22212( ., Destination 2, 11222, 12222 1 4 0 0 O
22221 Truck 2 31212 1 6 0 0 0
22222 31212 1 L 0 0 0
31111 1 3 0 0 0
3111]} Terminal, 'T'ruck 1 1 6 0 0 0
%9 31211 1 3 0 0 0
31212 Terminal, Truck 2 1 S 0 0 0




167

are reset from 1 to O, showing that the operations are now schedule-

able. All these changes are shown in Table T.h

Iteration 2: Now we have the possibility of scheduling one of the
operations 11211, 12211, 21111 and 22111. Let us suppose we randomly
select 21111. Truck 1 has already travelled 3 units of time, so
MJM = 3 which means the starting time for this operation is C, = 3

6
and the completion time C, = C6 +C =3+2=5., MAXMJ = MAXMJ + 1 =

T L
0+ 1 =1 which is equal to the entry in CLO for destination 1.
So, corresponding to the destination 1, multiply the entry in CLO by
-1 and turn all the switches in CL3 to ~1. This means no more new
entries are possible in any of the columns for destination 1. Turn
also the switch in IC3 from 0 to ~1 for 22111, the counterpart
of 21111. 1In column 2 corresponding to IFIND is 31111. The entry in

CLO0 for terminal is positive so the switch in IC3 corresponding to

31111 1is reset from 1 to O, showing that it is scheduleable.

Table 7.5 wreflects these chan

Iteration 3: Among the scheduleable operations 12211 and

31111, we randomly select 12211. Truck 2 was at the terminal and the
maximum job time MJM = 0. So the starting time is C6 = 20 and the
completion time is c7 =Cc*+C =0+ b=k, MAXMJ = MAXMJ + 1 =
0+ 1=1 which is equal tu the entry in CLO for origin 2. So
corresponding to this origin, multiply the entry in CLO by -1 and
turn all the switches in 1IC3 to -1. Turn also the switch in IC3
from 0 to -1 for 11211, counterpart of 12211.

In column 2 corresponding to IFIND, there are two operations 21212,
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Table T.4. Iteration 1

CLO cLl CL2 CL3 CL4 CLS CL6 CLT
11111 + Origin 1, Truck 1 211111, 22111 -1 3 1 0 3
11211 21211, 22211 3 0 0 0

2 11221}* Origin 1, Truck 2 21221, 22221 2 0 0 0
11222 21221, 22221 1 6 0 0 0
12111 + Origin 2, Truck 1 21112, 22112 -1 Y 0 0 0
12211 21212, 22212 L 0 0 0

1 l222l§+ Origin 2, Truck 2 21222, 22222 T 0 0 0
12222 21222, 22222 1 4 0 0 0
21111]+ Destination 1, 31111 0 2 0 0 0
21112} Truck 1 31111 1 7 0 0 0
21211 11221, 12221 1 2 0 0 0

1 21212 11221, 12221 1 T 0 0 0
p1op1 [+ Destination 1, 31211 1 2 0 0 o0
p1opp)  Tuck 2 31211 1 7 0 0 0
22111} ., Destination 2, 31112 0 6 0 0 0
22112 Truck 1 31112 1 4 0 0 0
22211 11222, 12222 1 6 0 0 0

2 22212 Destination 2, 11222, 12222 1 L 0 0 0
22221 ” Truck 2 31212 1 6 0 0 0
20222 31212 1 h 0 0 0
3111?}» Terminnl, Truck 1 1 3 0 0 0
31112 1 6 0 0 0

2 31211 1 6 0 0 0
31212;+ Terminal, Truck 2 1 6 0 0 0
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Table 7.5. Iteration 2

CLO CL1 CL2 CL3 CL4 CLS5 CL6 CLT
11111 ~+ Origin 1, Truck 1 21111, 22111 -1 3 1 0 3

5 11211 21211, 22211 3 0 0 0
11221} -+ Origin 1, Truck 2 21221, 22221 2 0o 0 0
11222 21221, 22221 1 6 0 0o o0
12111 -+ Origin 2, Truck 1 21112, 22112 -1 b 0 0 o0
12211 21212, 22212 4 0 0 0

1 12001Y > origin 2, Truck 2 21222, 22022 7 0 0 0
12222 21222, 22222 1 k4 0 0 o0
21111 Destination 1, 31111 -1 2 1 3 5
21112} ” Truck 1 31111 S R 0 0 o0
21211 11221, 12221 -1 2 0 0 O
21212 Destination 1 11221, 12221 -1 7 0 0 0
21221 7 Truck 2 31211 -1 2 0 0 o0
21222 31211 -1 7 0o 0 o0
22111} , Destination 2 31112 -1 6 0 0 0
22112 Truck 1 31112 1 L 0 0 0

5 22211 11222, 12222 1 6 0 0 0
22212 Destination 2, 11222, 12222 1 4 0 0 0
22221? ” Truck 2 31212 1 6 0 0 o0
22222 31212 1k 0 0 0
31111 0 3 0 0 ©
31112} + Terminal, Truck 1 1 6 0 0 0

%9 31211 1 3 0 0 o0
31212} + Terminal, Truck 2 1 6 0 0 0
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22212. The entry in CLO for destination 1 is negative and that for
destination 2 is positive. This means we cannot do anything with
operation 21212 and we simply turn the switch in IC3 corresponding to
22212 from 1 to 0, showing that it is scheduleable. This itera-

tion is shown in Table T.6.

Iteration 4: Among the two scheduleable operations 22212 and 31111,
let us randomly select 22212. Truck 2 has already travelled L

units of time. So MJM = 4 which means the starting time of the opera-
tion is C = 4 and the completion time 07 =C* 0, = b+ 4 =8,

MAXMJ = MAXMJ + 1 = 1
The entry in CLO corresponding to this machine (or destination 2) is
2. So MAXMJ # C0 (entry in CLO) which implies the switches in
IC3 corresponding only to 22212 and its counterpart 21212 should
be made -1.

In column 2 corresponding to IFIND, there are two operations,
11222, 12222. The entry in CLO for origin 1 is positivé and that
for origin 2 1is negative. As in iteration 3, we cannot proceed
towards the operation 12222 and we simply turn the switeh in 1IC3

corresponding to 11222 from 1 to O, showing that it is now schedule-

able. This iteration is shown in Table T7.T.

Tteration 5: Among the scheduleable operations 11222 and 31111, let
us randomly select 11222. Truck 2 already travelled 8 units of time.

So MJM =8 which means the starting time of the operation is C, = 8

6

and the completion time 07 = C6 + Ch =8+ 6 =14, MAXMJ = MAXMT + 1

=1+ 1 =2 which is equal to the entry in CLO for origin 1. So,
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Table 7.6. Iteration 3

CLO CL1 CL2 CL3 CL4V CL5 CL6 CLT
11111 - Origin 1, Truck 1 21111, 22111 -1 3 1 0 3
11211 21211, 22211 -1 3 0O 0 o0

2 1001 Origin 1, Truck 2 21221, 22221 2 0 0 o0
11222 21221, 22221 1 6 0 0 0
12111 - Origin 2, Truck 1 21112, 22112 -1 L o o0 o0

. il 21212, 22212 -1 4 1 0 k4
12221 ) -+ Origin 2, Truck 2 21222, 22222 -1 7 0 0 0
12222 21222, 22222 -1 L 0 0 0
21111)  Destination, 31111 -1 2 1 3 5
21112 ~ Truck 1 31111 -1 7T 0 0 0

_y ereul 11221, 12221 -1 2 0 92 0
21212 Destination 1, 11221, 12221 -1 T 0 0 o0
21221 7 Truck 2 31211 -1 2 0 0 0
21222 31211 -1 1 0 0 0
22111 Destination 2, 31112 -1 6 0 0 0
22112§ 7 Pruck 1 31112 1 4 0o o o0
22211 11222, 12222 1 6 0 0 o

2 o2 Destination 2, 11222, 12222 0 L 0 0 0
22221 {7 ‘Pruck 2 31212 1 6 0 0 0
22227 31212 1 L 0 0 0
31111 0 3 0 0 O
31112} + Terminal, Truck 1 1 6 0 0 0

99 31211 1 3 0 0 0
31212} + Terminal, Truck 2 1 6 0 0 0




172

Table 7.7. Iteration b

CLO CL1 CL2 CL3 CL4 CL5 CL6 CLT
11111 -+ Origin 1, Truck 1 21111, 22111 -1 3 1 0 3
11211 111, 11111 -1 3 0 0 0

2 11221 »oOrigin 1, Truck 2 21221, 22221 1 2 0 0 O
11222 21221, 22221 O 6 O O O
12111 -+ Origin 2, Truck 1 21112, 22112 -1 4 o0 0 ©
12211 21212, 22212 -1 4L 1 0 &

"1 10021 % +origin 2, Trueck 2 21222, 22002 -1 7 0 0 0
12222 21222, 22222 -1 4 0 0 0O
21111} R Destination 1, 31111 -1 2 1 3 5
21112 Truck 1 31111 -1 7T 0 0 0

o 2Ll 11221, 12221 -1 2 O O O
21212 Destination, 11221, 12221 -1 7 O O O
21221 { 7 Truck 2 31211 -1 2 0 0 0
21222 31211 -1 7 0 0 G
22111 Destination 2, 31112 -1 6 0 0 O
22112} ” Truck 1 31112 K o 0 o
22211 11222, 12222 6 0 0 0

2 22212 Destination 2, 11222, 12222 -1 L 1 i 8
22221 7 Truck 2 31212 1 6 0 0 0
22222 31212 1 4 0 0 0
31111 0 3 0 0 0
31112} + Terminal, Truck 1 1 6 0 0 0

99 31011 1 3 0 0 0
31212} + Terminal, Truck 2 1 6 0 0 0
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corresponding to this origin, multiply the entry in CLO by -1
and turn all the switches in IC3 to -1. The switch in IC3 for
12222, counterpart of 11222 is already -1l.

In column 2 corresponding to IFIND, there are two operations
21221, 22221. The entry in CLO for destination 1 is negative and
that for destination 2 is positive. This mesns that operation 21221
can never be explored and we simply turn the switch in IC3 corres-
ponding to 22221 from 1 to O, showing that it is scheduleable.

This iteration is shown in Table T.8.

Iteration 6: Among the two scheduleable operations 22221 and 31111,
we randomly select 31111. Truck 1 has already travelled 5 units of

time. So MJM = 5 which means C6 =5 and C_=C, +C, =5+ 3 =8,

7 6 4
MAXMJ = MAXMJ + 1 = 0 + 1 = 1 which is not equal to the entry in
CLO for the terminal which implies we turn the switeh in IC3 corres-

ponding only to 31111. This iteration ends here because there is no

entry in column 2. Table 7.9 displays this iteration.

Iteration 7: We select the only remaining scheduleable operation
22221. Truck 2 has already travelled 14 units of time. So MJIM = 1k,

which means C_ =14 and C,=C +C =1k + 6 = 20.

6 T 6 4
MAXMJ = MAXMJ + 1 = 1 + 1. = 2 which is equal to the entry in CLO
for destination 2. 8o corresponding to this destination, multiply the
entry in CLO by -1 and turn all the switches in IC3 to =-1. The
switch in IC3 for 21221, the counterpart of 22221 is already -1.

In column 2 corresponding to TIFIND is 31212. The entry in CLO
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Table 7.8. Iteration 5

CLO CL1 c12 CL3 CL4 CL5 CL6 CLT
11111 =+ Origin 1, Truck 1 21111, 22111 -1 3 1 0 3

o 11211 21211, 22211 -1 3 0 0
11221 } =+ Origin 1, Truck 2 21221, 22221 =1 2 0 o0 0
11222 21221, 22221 -1 6 2 8 1k
12111 + Origin 2, Truck 1 21112, 22112 -1 in 0 0 0
-y leann 21212, 22212 -1 in 1 0 4
12221 ) + Origin 2, Truck 2 21222, 22222 -1 T 0 0 0
12222,} 21222, 22222 -1 L 0 0 ©
21111 - Destination 1, 31111 -1 2 1 3 5
21112} Truck 1 31111 -1 7 0o 0 o0
21211 11221, 12221 -1 2 0 0 0
"L 21212 Destination 1, 1221, 12221 -1 T O 0 O
21221 { 7 Truck 2 31211 -1 2 0 0 o0
21222 31211 -1 7 0 0 0
22111) , Destination 2, 31112 Y 0 0 0
22112} Truck 1 31112 L 0 0 0
22211 11222, 12222 6 0 0 0
2 22212 Destination 2, 11222, 12222 -1 L 1 L 8
20221 7 Truck 2 31212 o 6 0 0 0
22222 31212 1 Y 0 0 O
31111 0 3 0 0 0
% 31112} -+ Terminal, Truck 1 1 6 0 0 0
31211 1 3 0 o0 0
31212} + Terminal, Truck 2 1 6 0 0 0
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Table 7.9. Iteration 6

CLO CL1 CL2 CL3 CL4 CL5 CL6 CLT
11111 -+ Origin 1, Truck 1 21111, 22111 -1 3 1 3
11211 21211, 22211 -1 3 0

2 11221\ > Origin 1, Truck 2 21221, 22221 -1 2 0 0
11222 21221, 22221 -1 6 2 1k
12111 - Origin 2, Truck 1 21112, 22112 -1 Y 0O 0 0
12211 21212, 22212 -1 4 1 0 L

-1 12221} + Origin 2, Truck 2 21222, 22222 -1 T 0 0 0
12222 21222 -1 L 0 0 0
21111 - Destination 1, 31111 -1 2 1 3 5
21112} Truck 1 31111 -1 7 0 0 0
21211 11221, 12221 -1 2 0O 0 0
21212 Destination 1, 11221, 12221 -1 T 0O 0 o0

RPN Truck 2 31211 -1 2 0 0 ©
21222 31211 17 0 0 ©
22111} , Destination 2, 31112 -1 6 0 o0 0
22112 Truck 1 31112 1 b ) 0 0
22211 11222, 12222 1 6 0 0 0

2 22é12 . Destination 2, 11222, 12222 -1 L 1 8
22221 Truck 2 31212 0 6 0 0 0
22222 31212 1 Y o 0 o0
31111 -1 3 1 5 8
31112} + Terminal, Truck 1 1 6 0 0 0

2 31211 3 0 0 ©
312125 + Terminal, Truck 2 1 6 0 0 0
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for the terminal is positive so the switch in IC3 corresponding to
31212 is reset from 1 to 0, showing that it is scheduleable.

This iteration is shown in Table T.10.

Iteration 8: The only scheduleable operation now is 31212." Truck 2
has already travelled 20 units of time. So MJM = 20 which means

+ =20 + 6 = 26.
MAXMJ = MAXMJ + 1 =1 + 1 = 2 which is not equal to the entry in

C6 = 20 and CT =C
CLO for the terminal which implies that we turn the switch in IC3
corresponding only to 31212. This iteration ends there because there
is no entry in column 2. Changes have been shown in Table T7.1l1l.

At this point we check IC3, and we find no zero entry which
implies that we have obtained a feasible route for each truck.

Check IC7T and add the entries in this array corresponding to the
terminal. The figure so obtained is the total travelling time. In
this problem this is 26 + 8 = 34 units of time.

The operations constituting the route travelled by truck 1 are
11111, 21111 and 31111 and those corresponding to the route for truck 2
are 11222, 12211, 22212, 22221 and 31212. The routes for the two
trucks are shown in figures 7.3 and T.4. The number below the arrow
indicates the travelling time while the number above the arrow shows the

specific operation.
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Table 7.10. Iteration T

CLO CL1 CL2 CL3 CL4 CLS5 CL6 CLT
11111 - Origin 1, Truck 1 21111, 22111 -1 3 1 0
11211 21211, 22211 -1 3 0 O

2 11221 Y + origin 1, Truck 2 21221, 22221 -1 2 0 O
11222 21221, 22221 -1 6 2 8 14
12111 ~ Origin 2, Truck 1 21112, 22112 -1 4 0 0 0O

o leell 21212, 22212 -1 L 1 0 L
12221\ -+ Origin 2, Truck 2 21222, 22222 -1 T O O O
12222} 21222, 22222 -1 L 0 0 0
21111} , Destination 1, 31111 -1 2 1 3 5
21112 Truck 1 31111 <L T 0 0 0
21211 11221, 12221 -1 2 0 O O

-1 21212} , Destination 1, 11221, 12221 -1 T O O 0
21221 Truck 2 31211 -1 2 0 0 o
21222 31211 -1 7T 0 0 0
22111 Destination 2, 31112 ~1 6 0 0 0
22112 j “Truck 1 31112 -1 4 0o 0 o0

= pem1 11222, 12222 -1 6 0 O O
22212§ Destination 2, -1 L 1 L 8
22221 7 Truck 2 1 6 2 14 20
32222 -1 L o0 o o
31111 -1 3 1 b
31112§ + Terminal, Truck 1 1 6 0 0

2 aem 1 3 0 0
312123 -+ Terminal, Truck 2 O 6 0 0 0
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Table 7.11. Iteration 8
cLO CL1 CL2 CL3 CL4 CL5 CL6 CLT
11111 - Origin 1, Truck 1 21111, 22111 -1 3 1 0
11211 21211, 22211 -1 3 0 0
-2 11221} -+ Origin 1, Truck 2 21221, 22221 -1 2 0 0 0
11222 21221, 22221 -1 6 2 8 1k
12111 - Origin 2, Truck 1 21112, 22112 -1 in 0 0 0
oy  eenl 21212, 22212 -1 Y 1 0 L
12221 ) - Origin 2, Truc, 2 12222, 22222 -1 T 0 0 0
12222 21222, 22222 -1 4 0 0 0
21111 N Destination 1 31111 -1 2 1 3 5
21112 Truck 1 31111 -1 7 0 0 0
_p emem 11221, 12221 -1 2 0 0 0
21212 |  Destination 1, 11221, 12221 -1 7 0 0 0
2122%} Truck 2 31211 -1 2 0 0 0
21222 31211 -1 7 0 0 0
22111} , Destination 2, 31112 -1 6 0 0 0
22112 Truck 1 31112 -1 L 0 o o
.2 22211 11222, 12222 -1 6 0 0 0
22212( , Destination 2 11222, 12222 -1 L 1 4 8
22221} Truck 2 31212 -1 6 2 14 20
22222 31212 -1 4 0 0 0
31111 _ -1 3 1 5
o 31112} -+ Terminal, Truck 1 1 6 0 0
31211 1 3 0 0 0
31212§ + Termianl, Truck 2 -1 6 5 20 26
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02 D2

Total travel time = 3 +2 + 3 =8

Figure 7.3. Route for truck 1

Total travel time = 4 + 4 + 6 + 6 + 6 = 26

Figure 7,4, Route for truck 2
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F. Presentation of a Larger Problem

In the previious section, we considered a small problem with 2
origins, 2 destinations, 2 trucks and 3 loads. Let us expand the
problem to one having 3 origins, 3 destinations, 10 trucks and
20 loads (3 x 3 x 10 x 20).

Let us assume that truck 1 will carry U4 1loads, each of the
trucks 7 and 10 will carry 1 load and the rest of the trucks
will carry 2 loads each. Other relevant information has been given

in the following data matrix.

Table 7.12. Data matrix for the problem (3 x 3 x 10 x 20)

0l (Time/cost matrix) 2 5 6 8
0, 8 3 T 6
0, 6 8 2 6
b 5 9 6 20

The problem was run on the computer using the algorithm developed
in section D. This problem has 303 possible operations whereas there
are 24 operations for the (2 x 2 x 2 x 3) problem explained in the

previous section. It shows that for a bigger problem, the input stream
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becomes considerably bigger. But this involves only a few changes
on each data card.

To halt the sampling process, stopping rule 3 as explained in
Chapter 3, section B, was applied. The sample size used was 20 and
the total number of schedules generated was 60. CPU time was
less than 2 seconds per schedule.

Out of the 60 schedules, the total travelling time for the
worst schedule was 307 and that for the best one was 229.

Stopping rule 2 might give us a better possible solution, but
at the expense of a higher CPU time. In fact, the best schedule
having 229 units of travelling time was obtained in the first 2
samples of size 20. But the stopping rule criterion was not met
until a third sample of size 20 was generated. So, for a bigger prob-
lem, the sampling strategy should be to specify a smaller sample size
and apply stopping rule 2. This may yield a better result in less CPU
time.

The routes for each of the 10 trucks corresponding to the schedule
having 229 units of travelling time have been displayed in figures
7.5 = T.1h4,

The truck routine summary is given in Table T.13. The information
gives an indication of the distribution of the arrivals and departures
by each truck at each origin and destination. Although the routes
are not known from this table, small changes in the product availability
or number of trucks available might permit management to construct another
"good" solution by using the table in conjunction with the previous

routing diagrams.
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03

Travel time = 45

Figure 7.5. Route for truck 1

by o D1
o2 D2 (09 “__,{'ID

03 D3 03 D3 Travel time = 21

gure 7.6. Route for truck 2

03 D3 03 D3 Travel time = 25

Figure T.7. Roule for truck 3
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Travel time = 13

Figure 7.8. Route for truck U

Travel time = 21

Figure 7.9. Route for truck 5

////}'(:> Travel time = 22

Pigure 7.10. Route for truck 6




184

Travel time = 9

Figure T7.11l. Route for truck 7

Travel time = 2L

Figure 7.12. Route for truck 8

0l 0l D1

@ @ ‘—‘>@ Travel time = 32

03 D3 03 D3

Figure 7.13. Route for truck 9
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01 D1
@ @ @ @ Travel time
03 D3

‘Total travel time for 10 trucks = 229

Figure T.14. Route for truck 10

Table 7.13. Truck routing summary

a
Trucks 0 0 0 *
1 2 3 b B D4 Lk
1 3 1 1 1 2 L
2 1 1 1 1 2
3 1 1 2 2
Y 2 2 2
5 1 1l 1 1 2
6 1 1 1 1 2
7 1 1 1
8 1 1 1 1 2
9 2 1 1 2
10 1 1 1
10
= = = = = =| T =
a. =8 a, 6 B, b1 5 b2 9 b3 =1LK 20
3 3
Ia =20 LI i=20
j=3 1 i=1

81% = number of loads carried by Kth truck

K
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G. Extension of the Transportation Algorithm

1. Multi-terminal system

The algorithm developed in section D is similar to the .one given
in Chapter 2. Although in sections E and F a single terminal is con-
sidered for the illustration of the transportation problem, the algorithm
can be applied without any basic modification for a multi-terminal system.
The different terminals will be numbered as different machines of the

same facility.

2. Multi-product system

This system refers to the situation where more than one type of
product is involved. For the sake of discussion, this system can be
further subdivided into two classes:

(1) Each truck carries a specific product, and

(2) A truck can carry more than one type of product. Let us
discuss each of the gbove classes by specific examples, For the Tirst
class, let us look into a system having three origins, three destina-

tions, one terminal, four trucks and two types of products A and B

with the following limitations.

Trucks Number of loads to carry
1 2(4)
2 3(B)
3 2(A)
4 2(B)
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Table T.1lk. Supplies and demands

Origins/destinations Number of loads available/required

Product A Product B
Ol 2 1
0, - 2
O3 2 2
Dl 1 2
D2 2 -
D3 1 3

One way to attack the problem would be to add one more integer
to the algorithmic notation for an operation to specify the type of

product. DBut this would bring operational complexities in the compu-

ter logic. We, therefore, suggest the following alternative approach.

Principle of decomposition: Let us decompose each origin and desti-

nation involving more than one type of the product into two origins or
destinations. This will give rise to a single-product system of five
origins and five destinations as shown in Table 7.15. The system after
decomposition is equivalent to two independent systems corresponding to
two types of products as shown in Tables 7.16 and 7.17. The two systems
with the specific identities to their origins, destinations and trucks

can now be solved by a single program with the algorithm developed in

section D.
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Table T7.15. System after decompositon

. e Number of loads available/required
Origins/destinations (System after decomposition)

Original System after
system decomposition Product A Product B
2 -
0 -==:::::::::::::::Ol
2
- - 2
0, %3
— 2 -
0 — 0,
3\
0 - 2
=D 1 =
Dl \ 1
D, - 2
D2 ~‘D3 2 -
__,-Dh l -
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Teble 7.16. System with product A

Origins Destinations Trucks

0l D1 1
D
3
0, 3
D,

Table 7.17, System with product B

Origins Destinations Trucks
02 D2 2
0
’ b
D
05 5

The second class is a multi-product system where trucks can carry
more than one type of product. Some modifications are needed in the
algorithm of section D in addition to decomposition of origins and
destinations.

Let us describe two independent routes of the same truck for two

different products by the network diagrams shown in figures 7.15 and
7.16.
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Figure 7.15. Route for product A

Fipure 7.10, Route for produet P
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The routes of the same truck for the two products being "independent,"
the truck can reach the terminal without delivering any or some loads
of some product, if the algorithm is applied to the problem without

any modification. To show this, referring to figures 7.15 and 7.16, let
us suppose there are two loads yet to be delivered, one from 01 to

D. and the other from 0, to D3. The truck from some destination

1 3

mey come to O deliver the load to D, and go back to the terminal

3’ 3
without delivering the load from 0l to Dl' The algorithm does not
provide anything to prevent this possibility.

In order to ensure that the truck delivers all its assigned loads
before it reaches the terminal, let us incorporate the following
changes in steps 2 and 3 of the algorithm in section D.

Change the title of the step 3 from "Processing the operation" to

"Processing the operation related to origin/destination.”

Step 2 will be changed as follows:

[
N
£
=ty
[44]
ck

Check IC3 except the last group {termina
any zero entry in any row. If no zero entry is found, go to step 2A.
Otherwise, count the number of zeros and select one of the processes
at random. IFIND is the row selected by randomization. Go to step 3.

Step 2A. Processing the operation related to terminal: Count

the number of operations having a zero in IC3 1in the last group. Let
these operations be in set 5. Select one of the operations at random
from 5 and call it IFIND. In 5, check the operations correspond-
ing to the same job as IFIND (having first 3 digits in common). Let
these operations including TIFIND be in a subset w. From among the

operations in w, process the one having the maximum starting time (06).
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Put this value in IC6. To this value, add the entry in IChK and put

it in IC7. Mske MAXM = MAXM + 1 and put it in 1C5. Turn the switches
from 0 to <1 in IC3 for the operations in w. If there is no

zero entry in IC3 (last group), go to step 6; otherwise, repeat this

step.

3. More than one job in a machine

The transportation algorithm developed in section D can also be
applied with some modifications for a production scheduling in which
more than one job can be processed simultaneously in a single machine.
Heat treating ovens, chemical treatment tanks, and the like are some
of the examples in which usually more than one job is processed simul-
taneously. Another example is "Ironworker" which is a general-purpose
tool that punches, notches, and cuts. Here men can work on two Jobs
simultaneously. This general service area has a number of such
"atility" tools that can be run by any worker who needs them. It may
be desirable to have this type of general purpose machine in the inter-

mittent industry which deals with many different types of products.
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VIII. SUMMARY

A. Summary and Conclusions

An algorithm was developed to generate feasible schedules for
a multi-machines multiple facilities system. The algorithm was
further improved by the concept of left-shifting to provide a
better subset of the feasible solutions. In all the sample problems
tested, the superiority of the left-shifting techniques over the
pure random (non-shifting) procedure was verified with respect to
minimum schedule time and different parameters of its distribution.

Tt must be emphasized that two factors pose potential severe limi-
tations on the utility of Monte Carlo method for solving sequencing
problem: the efficiency of the algorithm and rules for halting the
sampling processes. Besides the left-shifting procedure, different
biasing techniques were explored to improve the efficiency of the
random sempling. Some of the biasing technqiunes introduced in this
dissertation have been found even more powerful than the left-shifting
procedure. However, the improvement by those biasing techniques over
the left-shifting solutions is almost always accompanied by a con-
siderable increase in CPU time/schedule. Total CPU time asso-
ciated with any biasing technique could be reduced by specifying a
smaller sample size in the algorithm without affecting the result
considerably. It was, therefore, suggested that depending on the
approximate minimum schedule time and CPU time, the scheduler can
apply the left-shifting prineiple, combination technqiues or biasing

techniques with smaller sample size.
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With regard to the rules for halting sampling processes, several
distribution-free stopping rules have been suggested in this disserta-
tion. The stopping rule functions were converging in nature; and, as
such, the scheduler has some Justification to believe that the schedule
obtained at the time of stopping should be close enough to the best
obtainable schedule by this algorithm. From our experience, the
different stopping rules need different number of schedules before the
sampling process stops. Therefore, a rough guideline was suggested
regarding the sample size to be specified for different stopping rules
and different solution techniques. To determine an approximation to
the best obtainable schedule, a minimum bound value for the schedule
time was estimated by using a three~parameter Weibull distribution
which permits the calculation of the probability of further improve-
ment in the solution at any instant.

In a practical situation, the scheduler may be interested in
performing some operstions on a particular machine of a facility.

For example, the last finishing operation should be done on the machine
which can maintain required precision. Also, the technological orders
of different jobs may not be independent of other jobs in the sense
that a particular operation on a commodity may need the completion of
an operation of another commodity. We come across this situation in

an assembly operation. The proposed algorithm can be applied in the
above cases without any basic modifications.

The algorithm for the multi-machines multiple-facilities system
was further modified to be applied to a special type of transportation

problem. This modified version could be equivalently applied



195

in a job shop situation where more than one job can be simultaneously

processed on the same machine.

B. Recommendations

The decision criterion used in this dissertation as a measure of
performance is minimizing make-span time. In the current literature
the emphasis has been on this measure of performance and it is argued
that all other measures such as minimizing the in-process inventory,
minimizing the costs of the machines or minimizing penalty costs of
the jobs (if they are delivered later than the promised due date), are
directly or indirectly related to this function. In defense of this
measure, Manne (1960) states:

The economist, conditioned as he is to take a dim view of any
minimum and other than dollar costs, will find it difficult

to be altogether happy with Johnson's criterion, the minimi-
zation of t, the make-span. In defending this choice of
minimand, however, it should be pointed out that t is likely
to be correlated with dollar costs. In minimizing t we may
conceivably alsc obtain the following cost and profit benefits:
(a) a lowered amount of inventory ties up in work-in-process,
(b) a shorter average customer delay time, and (¢) & lower amount
of idle time incurred prior to the performance of all currently
booked jobs--i.e., a greater capacity to take additional work
as new orders materialize. To the extent that all of these
factors work in the reasonable proxy variable for economic cost.
The job sequence that serves to minimize the make-span might
also be one that scores quite well on the criterion of dollar
costs.

It may be noted that Manne states that one may conceivably also

obtain benefits other than minimizing the maximum flow time "o the
extent that other factors were in the same direction." The guestion "Do
the factors work in the same direction or not and even if they work in

the same direction, what happens if their rates of change are
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different" becomes pertinent. "No mathematical or empirical study
has appeared in literature indicating the validity of Manne's state-
ment. Beenhakker's (1963) only attempt in this direction fails to
give any conclusion because in proving the equivalence of various
criteria, he essentially considers time as & measure of performance
instead of costs" (Gupta, 1971). In the absence of any mathematical
analysis, Gupta (1971) considered a hypothetical example and showed
that Manne's argument doesn't hold in general.

In the future research work, the inclusion of other criteria
should be considered. 1In a job shop, all jobs are not of equal value.
Every time a job is processed in & machine its value is increased. The
different Jobs have different due dates. For each job, we can
assign different priority indices, considering the above factors
separately or on the basis of a linear combination of those factors.

In the process of sampling, jobs should be selected according to higher
priority indices. There has been a reasonable amount of discussion

in the literature on the selection of a decision criterion for schedul-
ing problems. Quite recently multiple decision criterion (such as

goel programming) has been investigated. Therefore, it is suggested
that use of multiple decision technique be considered for scheduling
problems such as those discussed in this dissertaiton.

Further biasing techniques should be developed in order to
provide better schedules. In this regard, multiple left-shifting

principle and other techniques mentioned in Chapter 5 may be explored.
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As régards to the transportation algorithm, besides the different
possible extensions proposed and discussed in Chapter 7, section G, it
is expected that the algorithm may be improved with respect to computer
time by the following alteration.

Referring to the algorithm developed in Chapter 7, section D,
during the solution procedure, many times we know that some origins
and destinations are already "blocked" (step 4). Even then, in
searching for zeroes and selecting one of them from IC3 (step 2),
the algorithm does nop exclude those origins and destinations. In the
Monte Carlo procedure, we generate many schedules and select the one
with the minimum total time. So, especially for a larger problem, &
considerable amount of CPU time is expended in executing step 2
for the entire run. The following change in the algorithm will possibly
reduce this time to a great extent.

i) TFor the terminal, make the entry in CLO equal to the number
of trucks.

ii) Change steps 2 and 4 of the algorithm in Section D as
follows: '

In step 2, check CLO whether there is any positive entry. If
no positive entry is found, it implies that a feasible route has been
obtained for each truck and step 6 follows. Otherwise, count the number
of zeroes in IC3 corresponding to the machines having positive
entries in CLO and select one of the processes at random. IFIND is

the row selected by randomization.

In step 4, multiply the entry only in CLO by =1 correspond-

ing to the machine, Leave the other switches in IC3 as they are.
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XI. APPENDIX I. LEFT-SHIFTING ALGORITHM

COMMON IC1(50044),1C2(500544+15)s1C3(500),4IC4(S00),ICS(500)
CIOIMMON ICH(S00)+IC7(S500)+sIND(S00)sISAVE(SO0C+3)+ICS3(5C0)
DIMENSICN INT(1500)
DO 1 I=1,500
IC3(1)=0
1C4(I)=0
ICS5(1)=0
IC6(1)=0
IC7¢1)=0
1CS3(1)=0
1 IND(I)=O
NOo 3 1=1,500
DO 3 J=1.4
3 IC1(T+J)=0
NN 4 1=1,500
DN &4 J=144
DT 4 K=1,15
4 1C2(I9JeK)=0
DN 28 I=1,1500

aR IDT(T)=0

C

T RESAD

< IN

c SCHe INFORMATICN
~

REAC(S+5) NNeNN24+IXsIG
S5 FARMAT(2014)
D9 AN I=1.NN
2 RTAD(S,11) IND(I)
11 FIRMATI(I2)
JL=0
PO 6 1=1,4NN
PEAD(S+RYI(CICS3(J)eJ=1+52)
DA Q0 JU=1,4
9N ICU{TLJ)=ICS3(J)
J=1
JJ=4
DN 21 K=1.15
J=J+4
JJd=JJ+4
JL=0
DC 91 JK=JsJJ
JL=JL+1
91 IC2(I+JL+K)I=ICS3(JK)
5 CONTINUF
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637

OO NN

4

NOwW

20k

FORMAT(* *,2011)

FORMAT (13(12,11512411))
WRITE(64,12)

FORMAT(*1')

N 7 T=1.NN

PEAD(S+687) IC3(1),IC4(T)
FORMAT(I1,12)

N3 24 I=1,NN
ICS3(IY=1C3(1)

TN

FIND AN
OPTIMAL

505

REAEANANR]

500

11710

15

SCHEDe

NPP =0

MXX=100000

IFF=0

MY X =0

NMN=~1

NPR(QB=0

Lx=1

LL X=NN

CCNTINUE

NP CHR=NPKNB+]
NMN=NMN+ 1

CONTINUE
IF(NMNGFQeNN2) G T 1000
CONT INUE

IFINP=0

CALL PANDUTIX 1V XX
IX=1Y

NX=XXENMN+e G909
IF(NXeGF ¢ NN) NX=NN
IF(NXeLF oC) NX=1

DO 15 I=1,NN
IF(IC3(1)eZQe0) GO 7O 16
CONT INUE

BRANCH DUT IF
T3 HAS

1A

l"

NO ZFRNS

60 T2 100

N 17 T=NX,NN
IF(IC3(1)e" Qe0) IFIND=I
TF(TC3(1)efQe0) GC TO 1°
CONTINUE

DD 19 I=1,NX
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IF(IC3(1)e®Qe0) IFIND=I
IF(IC3(1)eEQe0) GO TO 18
17 CONTINUF
18 CONTINUF
A PROCESS
HAS BEEN
SELECTED

ICI(IFIND) ==1

MA X=0
IU=ICI(IFIND,4)
IMNU=IC1(IFIND,1)
1J08=I1C1(IFIND,3)

DO 20 I=1,NN

[ECTICI (T i) e EQeIMNUSANDGICI( Ty

1(1,4))

XIC3(T) =1
IF(ICI(T+3)eNELTJCE) GO TN 20
IF(IC7(1)eGEeMAX) MAX=IC7(I)

20 CONTINUE

B)oFQoIJWRoANDoIUoﬁOoICl

TO SELFCT
AT RANDOM THF
NEXT PRACFSS

CALL TIMELG(IFINDJNN, MAX)
IF(IC2(IFIND,3,1)eFQe0) GO TN 30
NC=TND(IFIND)
CALL RANDU(IX,1Y,4XX)
IX=1vY
XXX=XX¥*NC+o39992
ISFL=XXX
IFCISFLeLTel) 1SFL=1
IF(ISELeGTeNC) ISEL=NC
N3 21 L=ISFL,ISFL
I[=]IFIND
NI=IC2(I+1,L)
N2=1C2(1,2,L)
N3=1C2(14+3,L)
N4=IC2(1+4,4L)
NO 22 J=1,NN
IF(1eEQeJd) GO TN 22
IF{NIeNE@oIC1I(Js1)) GC TO 22
IF(N1eFQeIC1{J0s])eAND N2 eFNeICI(Jys2) e ANDeN3FDWICE
1(Js3)eAND NG,
XEQe IC1(Js4)) ICLI )=0
22 CONTINUF
21 CONTINUE
30 CONTINUE
501 GO TN 500
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CONTINUF

MA X=0

DN 60 I=1,NN
IF(IC7(1)eGFeMAX) MAX=IC7(1)
CANT INUF

IDT(NPRDB)=MAX

J=0

IF(MAXeGTeMYX) MYX=MAX
IF{MAXaGTeMXX) GO TO 600
DO 35 I=1,NN
WRITE(H6+40) IC3(I),ICS(I),IC6(1),1C7(1)
FORMAT(® * ,4(1542X))
WRITF(H,12)

NPP=NPRORB

MXX=MAX
NN 61 I=LX.LLX

J=J+1

ISAVE(I+1)=ICS(J)
ISAVE(1.2)=1C6(J)
ISAVE(I+3)=1C7(J)
CONTINUF
NO 62 I=1,NN

IC5(1)=0

ICA(T)=0

IC7(1)=0

IC3(I)=ICS3(1)
GO TO 505
CIONTINUFE
CALL STOPJ(MXX sMYX NPENB,IDT, ISXLIFF)
IF(ISXeEQel) GO TN 1005
NMN=0
GN TN 1010
CONTINUE

WRITE(6,1002) MXX
FORNMAT(* 1 ,14)
FORMAT(31S5)

NN 6012 1I=1,NPRPDR
WRITF(6,6013) IDT(I)
CONTINUF
FOFMAT(®* *,15)

5TNP

ENP
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SUBROUTINF STOPJ(MXX MYX NFFROBIPT 4 ISX, IFF)
DIMENSION IPT(1500)

I1SX=0

IFF=IFF+1

IF({IFFeNEesl1) GD TO 10
LX1=MYX=MXX

RFEFTURN

LL2=MY X-MXX

WOITE(696) NPROB ¢MXXeMYXoLX1LL2,LINV
FORMAT(' *,6(2X,15))
LINV=LL2-LX]1

IF(LINVeLT 1) GC TN 20
LX1=Le2

W TURN

CONT INUF

I1SX=1

L=1

JJ=NPRNB+1]

DO 30 I=L.,NPR(OB

1U=1+1

ND 40 J=1JsJJ
IF(IPT(I)eGELIRPT(J)) GN TN 40
I1S=1IPT(J)

IPT(U)=IPT(1)

IPT(I)=IS

CONT INUF

L=L+1

CONTINUF

RETURN

END
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SUBRCUTINE TIMELGUIFINDINNsMAX)

COMMON IC1(S0044)+:1C2(500+4415)4IC3(S500)+1C4(5C0),1C5(5S00)
COMMON IC6(S00)+IC7(S00) s IND(S0N )y ISAVT(500,3),ICS3(8CD)
IS=ICI(IFINP,1)

1SS=ICL(IFIND.2)

DD 1 1=1,4,NN

L=1

IF(ISeEQelIC1{Is1)eANDJISSeFNSICI(Is2)) GO TC 2
CONTINUF

DN 3 I=L NN

LL=1

IF(I1SeFQelZ1(Is1)eANCISSeFRelICl1{142)) GO TC 3
LL=tL-1

GO 70O 4

CONTINUE

IF(ISeEQeICLIINNI1) eANDeISSeZQeTC1(NN42)) LL=NN
ITMAX=0

LS=0

NN 5 I=LsLL

IF(ICS(I)elLEeIMAX) GO TN 5

L.5=1

IMAX=ICS(])

CONTINUE

IF(LSeEQeQ) MAXS=0

10UT=n

CALL RECHK(INUT L LLsIFIND s IMAXyNNyMIM)
MAX=MJM

IF(IOUTeFQel) RTTUPRN

I12(LSeHENeN) GO TN 6

MAXS=ICT{LS}

IF(IMAXeNEoO) GG TO 6

ICS(IFIND) =1

IC7(IFIND)=IC&G&(IFIND)

R0 TN 10

ICS(IFIND)=IMAX+1

IF(MAXQGGF e MAXS) GO TO ©

IC7(IFIND)=MAXS +I1C4(IFIND)

1C6(IFIND) =MAXS

RETURN

IC6(IFIND)=MAX

IC7{IFIND)=MAX+IC4(1IFIND)

CONTINUF

MAX=0

DO 11 I=14NN

IF(IC7(1)eGF eMAX) MAX=IC7(1)

RETURN

FND
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SUBPOUTINE RECHK(TINUT oL sLLIIFINDsIMAXINNyMIM)

COMMON IC1(50044)91C2(50044,415)51C3(500),1C4(500),ICS(500)
COMMON IC6(S00)4IC7(S00)sIND(S00),ISAVIE(S00+3)4+1CSE3(500)
[ouT=0¢

1SS=0

INTV=IC4(IFIND)

MJIM=0

D3 41 K=14NN

IF(ICI(K43)eNESICL(IFIND,3)) GO TO 41

IF(IC7(K)eGE eMUM) MIM=TC7(K)

CONTINUE

MAXM=TMA X

IF(MJMFQe0esANDeMAXM,FQe0) GN TC 2000

IF(MAXMeEQeO) GO TN 1001

PO 50 K=1,MAXM

DO 50 I=LesLL

IFCICS(I)eNEeK) GO TO S50

ITIME=IC?7(I)

1z2=1

La2=L

IF(MUMGGTLITIMS) GO TN SO

I1=1

IAvVA=IC6(1)

IF(TAVASLE eMUM) MUM=TTIME

IF(MJUMeGEe IAVA) GO TO 59

TAAA=TAVA-MJM

IF(INTVeGTel1AAAGANCsKeT= 00l ) MUM=ITIMF
IF(INTVeGTeIAAAsANDeKeTQel) GO TC SO

IF(TAVALGT e 0 ANDSICS (1) eE0el e ANDSINTVeLF e IAAA) GN TO 500

IF{ISSerGei) GO 77 5000
I158=1

IF(INTVeLESIAAA) G T 500
CONTINUF

KK=K+1

IF(KKeGTeMAXM) GC TN S0
DN 52 IL=L,LL

IF(ICSIIL) eNFeKK) GO TO 52
IF{INTVeLEsIAVA) MUM=ITIMF
TAVA=IC6(IL)-ITIME

1Z=1L

IF{INTVeLFE e IAVA) GO T3 5CO
CONTINUS
GN TN S50
IAM=17
IXX=1C5(12)
DN 60 KK=L.LL
IF(ICS(KK)eLTeIXX) GO TO 60
ICSIKK)=ICS(KK) +1
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CONTINUE
TAM=IFIND
1CS5(IAM) =TI XX
IF(IXXeNEZel) GO TC 70
IC7(IAM)=INTV+MUM
IC6(IAM) =0 +MUM
I10UT=1
RETURN
CONTINUF
IC6(IAM)=MIM
127(IAM) =MUM +I1C4(IFIND)
I10UT=1
GO TC 10M
CONT IMUF
CONTINUE
RE TUFN
ICS(IFIND)=1
IC6(IFIND)=0
IC7(IFINDY=IC4(IFIND)
10UT=1
QETURN
END
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XTT. APPENDIX II. TRUCK RUUTING ALGORITHM

COMMAON ICI1(S00+4)+1C2(500+4,15),1C3(500),1C4(500),1ICS

1¢(s500)
COMMON IC6(S00)+IC7(S00) s IND(SO00)+ISAVE(S00+3),1CS3(500)
COMMON IDX(25),IMX(25)
DIVMENSICN IDT(1500)
DO 1 I=1,500
IC3t1)=C
ICa(I)=0
ICS(1)=0
ICe(l)=0
IC7({1)=0
ICS3(1)=0
1 INR(I)=O
DO 3 I=1,500
DO 3 J=1+4
3 1IC1(I,J)=0
DO 4 1=1,500
DO 4 J=1+4
DO 4 K=1,15
& IC2(I,JsK)=0
DO 88 1=1,1500
IDT(I)=0

FEAD
IN
SCHe INFOPMATINON
AD{SeS7) INX
EAD(5+97) 1IMX
FARMAT (251 3)
REAC(S+S) NNJNN2,,IXWIG
5 FORMAT(2014)
DO 80 I=1.NN
R) REAC(S5+.11) IND(I)
11 FORMAT(I2)
JL=0
DO 6 I=1+NN
PEAD(S»E)(ICS3(J)9d=1,52)
FOEMAT(13(211,12,12))
DD 90 J=1+4
90 IC1(I,4J)=1CS3(J)
J=1
JJ=4a
DO 91 K=1,15
J=J+4
Jid=JdJ+a
JL=0
DN 91 JUK=JeJJ

pros
L

o 1
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JL=JL+1
21 I1C21(1,JL+K)}I=1CS3(IK)
6 CONTINUF
? FORMAT(* *,201I1)
WRITE(6+12)
12 FORMAT(*1")
DO 7 I=1,NN
7 RFAC(5,687) I1C3(1),1C4(I)
FOFMAT(I1,12)
DO 24 I=1.NN

ICSAINI=IC3(I)

2]
P
~

&

NOW TO

FIND AN
IPTIMAL
SCHEDe

DO VOO ON

NPP =0
MXX=100000
IFF=0
MY X =0
NMN=-1
NPROB=0
Lx=1
LLX=NN
505 CONTINUF
NPROB=NPROB+1
NMN=NMN+ |
500 CONTINUF
IF(NMNFQeNN2) GC TO 1000
1010 CIANTINUF
IFIND=0
CALL RANDU(IXsIY,4XX)
IX=1¥
NX=XXE¥NN+o 909QQ
IF(NXeGE oNN) NX=NN
IF(NXelLF o0} NX=1
DO 15 I=1,4,NN
IF(IC3(I)eS0e0) GO TN 16
15 CONTINUF

c

T BRANCH QUT IF
o C?2 HAS

c NC ZFPRNS

C

GO TN 100
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16 DO 17 I=NX.NN
IF(IC3(I)eRQe0) IFIND=I
IF(IC3{I)eEQeO) GO TO 18

17 CONTINUE
N0 19 I=1,NX
IFCIC3(I)e"Qe0) IFIND=I
IF(TC3(I)eENe0O) GC TO 18

19 CONTINUE

18 CONTINUY

C A PROCESS

C HAS BEFN

c SELECTED
ICI(IFIND)=~1
MAX=0
IU=ICLI(IFING4)
IMNU=IC1(IFIND,s1)
I1J0B=IT1(IFIND,3)
00 20 I=1sNN

IFCICI(I 1) eEQeIMNULANDSIC1(143) sFQeIJOBsANDeIULEQ.IC1

XIC3(1)=-1
IF(ICI(Te3)eNELIJOB) GO TO 20
1¢144))

IFCIC7(T)eGEeMAX) MAX=IC7(1I)
20 CONTINUE

TO SELFCT
AT RANDOM THF
NEXT PROCFESS

OO0 0

CALL TIMELG(IFINDJNN,NAX)
IF{IC2{IFINDs3+11etGel) GO 7O 30
NC=IND(IFIND)
LS=1
I1vv=1
DO 21 LR=1.16
21 IFCICX(LE) «LTSIFIND) IVV=IVV+]

ICH=IMX(IVV)
IF(IVVeEGel) GO 7O 437
LS=IDX(IVV-1)+1

497 LSS=IDX(IVV)
DO 494 LB=LS,LSS
IF(ICS{LB)sE0Q=ICH) GO TN 365

494 CONTINUE
GO TN 300
395 CONTINUE

DN 396 L3=LS5,LS8%
396 I1C3(LB)=-1

IMX(IVV)=~1%ICH
300 CONTINUF
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DN 22 1KK=1,4NC

I=IFIND

Tvv=1

N1I=IC2(14+1,41IKK)
N2=1C2( T 42,4 1KK)
N3=1C2(1+3,IKK)
NA=IC2(144,1KK)

NN 22 J=1.NN

IF(1sEQed) GC TO 22
IF(N1eNEeIC1(Js1)) GO TO 22
IF(NGeNELICI(JUs4)) GO TN 22
IFIN2eNFeICI(Js2)eNReNIeNFLICI(J,3)) GD TO 22
DO 23 INK=1,1G
IFCIDX(INK) oL TeJ) IVV=IVVH]
IF(IMX{IVV).LFe0O) G2 TO 22
1C3(J)=0

CONTINUE
CONTINUF

GO TO 5C0

CONTINUE

MAX=0

NO 60 I=14NN
IF(IC7(I)eGEeMAX) MAX=IC7(1)
CONTINUE

MAX=0

1G1=1G~1

1J4=1IDX(IG1)

DO 327 1=1J4,NN
MAX=MAX+IC7(I)

IDTI(NPRNRY =MAX

J=0

IF(MAXeGToaMYX) MYX=MAX
IF(MAXeGTeMXX) GO T2 600
00 35 I=1,NN

WOITE(H+40) IC3(I)LICS(I)L1CHL{T),LIC7LI)
FNRMAT (* ' ,5(1I5,2X))
WRITE(6412)

NPP=NPRORB

MXX=M4a X

NN 61 I=LX.LLX

J=J+1

ISAVE(I,1)=1CS5(J)
ISAVE(]42)=176(J)

ISAVE(I +3)=1IC7(J)

CONTINUR

NO 62 T1=14NN

I1ICS(1) =0

1IC6(1)=0
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IC7(1)=0
IC3(I)=1CS3(I)
I=1G-1

DO 875 Jw=1,I1
IMX(JUW)==1*IMX(JIW)
GO TO 505

CONTINUE

CALL STOPJIMXXsMYXINPROB,IDTISX,1FF)
IF(ISXeEQel) GO TO 100S
NMN=0

GO 0 1010

CONTINUF
WRITE(64+1002) MXX
FORMAT('1°,14)
FORMAT(31I5)

DN 6012 I=1,NPROB
WRITE(6+,6013) IDT(I)
CONTINUF

FORMAT(®* *,1IS)

STOP

END
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SUBROUTINE STOPJ(MXX ¢sMYX s NPRCEBs IPT+ISXs IFF)
DIMENSION IPT(1500)

1$X=0

IFF=IFF+1

IF(IFFeNESl) GO TO 10
LX1=MYX-MXX

RETURN

LL2=MY X=-MXX

WRITF(6,6) NPROBMXXsMYX,LX1,LL2)LINV
FORMAT (Y *,6(2X,15))
LINV=LL2-L X1

IF{LINVeLTel) GO TN 20
LX1=LL2

QETURN

CONT INUF

I1SX=1

L=1

JJ=NPROB+1

DO 30 I=L.NPROB

1J=1+1

DO 40 J=1J44JJ
IF(IPT(I)eGELIPT(J)) GO TO 40
I1S=IPT(J)

IPT(J)=IPT(1)

1PT(I)=1IS

CONTINUE

L=L+1

CONT INUF

PE TURN

END
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SUBROUTINE TIMELG(IFIND,NN,MAX)

COMMON IC1(50004)4+1C2(500+4415)+IC3(S00)IC4(500)+1CE(500)
TOMMON IC6(S00),1C7(S00) sy IND(SCC)ISAVE(S00+3)+ICS3(E00)

IS=ICI(IFIND,1)

ISS=ICI1(IFIND,2)

DO 1 I=1,4NN

L=1
IF(ISeSQeIC1(I91)eANDISSeFQeICI(Io2)) GC TO 2
CONT INUF

D7 3 I=LsNN

LL=1
IF(1SeEQeIC1(I41)eANCeISSeFQeIC1(142)) GO TO 3
LL=LL~-1

GO TO &

CAONTINUF

IF(ISeFQeICLI(NNe1)oANDe ISSeFQeICI(NNL2)) LL=NN
IMAX=0

LS=0C

D7 S I=L,LL

IF(ICS(1)elLZeIMAX) G2 TQ 5

L5=1

IMAX=1CS5(1)

CONTINUF

IF(LSeSNeN) MAXS=0

12UT=0

CALL RECHK{INUT oL oLLsIFINDIMAXsNNgMJIM)
MAX=MJUM

IF(INUT«S0el1) RPETUPN

IF(LSe=Qe0) GN TN 6

MAXS=1C7{LS)

MAXS=0

IF(IMAXeNESD) GO TN 6
ICS(IFIND)=1
ICT(IFIND)=IC4(IFIND)

GO TP 10

ICS(IFIND)=IMAX+]

IF(MAXeGT e MAXS) GN TN &
IC7(IFIND)=MAXS +IC4(IFINP)
IC6(IFIND)=MAXS

RETURN

IC6C(IFIND)=MAX
IC7(IFIND)=MAX+IC4(IFIND)

CONT INUFE

MAX=0

DD i1 I=1sRNN

IF(IT7({I)eGEeMAX) MAX=IC7(1)
RETURN

END
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SUBROUTINE RECHK(IOUT LsLL+IFINDs IMAXsNNsMIM)
COMMON IC1(500,4),1C2(500+4+15),1C3(500),1C4(5S00),ICES

1¢s00)

41

6000

52

500

COMMON IC6(S0N)1C7(500), IND(SO0),ISAVE(S00+3)+I1CS3(E00)
10UT=0

188=0

INTV=IC4(IFIND)

MIM=0

DO 41 K=1,NN
IF(ICI(Ks3)eNFLICI(IFIND,3)) GT TO 41
IF(IC7T(K) e GT eMIM) MIM=1C7 (K)
CONTINUE

IF(MJMeGEe0) RETURN

MAXM=IMAX

IF(NVMJIMeEQe De ANDe MAXMeEQe0) GO TN 2000
IF(MAXMeEQeO) GO TO 1001
D0 S0 K=1,MAXM
DO S0 I=LslLL

IF(ICS(T)eNF oK) GO TN 50

ITIME=ICT7(1)

1z2=1
L2=L

IF(VUMGTLITIME) GO TC S0

11=1

TAVA=1IC6(1)

IF(TIAVASLE e MUM) MUM=ITIME
IF(MUMGFoIAVA) GO TOQ 50
IAAA=TAVA-MUM
IF(INTVeGTeTAAAQANDeKe"Nel ) MUM=ITIME
IF(INTVeGT s IAAALANDeKoFQel) GO TN SO
IF{IAVAeGT e 0e ANDeICO{I1eEWel s ANDSINTVSLE o JAAA} GO TO 500
IF(ISSeFNel) GO TN 6000

1ss=1

IFUINTVeLE« IAAA) GO TC 500
CONTINUFE
KK=K+1

IF(KKeGTeMAXM) GO TN 50
D0 52 1L =t ,tL

IF(ICSCIL) e NFGKK) GO TN 52
IF(INTVeLFoe JAVAY MJM=ITIME
TAVA=TICA(IL)-ITIMF

1Z=1L

IF{INTVeLESsTAVA) GD TN 500

CONTINUE
GO TN 50

1AmM=127

IXX=IC5(12)
DN A0 KK=LoLL

IF(ICS(KK) «LTeIXX) GO TO 60
ICS(KK)=ICS(KK)+1
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CONTINUF
IAM=IFIND
ICSC(IAM)=IXX
IF(IXXeNFe1) GO TO 70
IC7(IAM)=INTV+MIM
TCE(TAM) =N+MIM
I0UT=1
RETURN
CONT INUT
IC6(IAM) =MUM
IC7(IAM)=MUM +IC4(IFIND)
I1JUT=1
GO TO 1001
CONTINUE
CONTINUF
PETURN
ICS(IFIND) =1
ICB(IFIND)=0
IC7(IFIND)=ICA(IFIND)
10UT=1
RETURN
END
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