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I. INTRODUCTION 

A. Introduction 

The problem of sequencing has been the subject of extensive research 

in recent years. In its general context, the sequencing problem is the 

problem of defining order (rank, priority, and the like) over a set of 

jobs (tasks, items, commodities) as they proceed from one machine 

(processor, facility, operation) to another or over the same machine. 

Thus, the sequencing problem involves the determination of the rela

tive position of job j to all other jobs. Moreover, a sequence is 

obtained when a complete ordering of the jobs is given. 

"Sequencing" is often used synonymously with "scheduling." The 

scheduling problem is to find the order in which jobs should be processed 

at each machine and their start and finish times at each machine. In 

the deterministic case, no distinction is made between sequencing and 

scheduling because, in the process of finding the best sequence, a 

schedule is automatically generated since it is always assumed that each 

activity is started as early as possible (Elmaghraby, 1968a). 

Sequencing problems arise quite naturally in various activities 

of everyday life. In the area of operations research, one of the most 

classical examples is the problem of sequencing n jobs on m machines 

in which each job has its individual route (i.e., the order of opera

tions on the job usually imposed by technological requirements, such as 

a hole cannot be tapped before it is drilled, etc.), which may be 

distinct from all others. The feasible sequence obtained thereof should 
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result in an optimal or near-optimal performance for the shop with 

respect to selected criteria. 

B. Models 

Different sequencing problems naturally lead to different models, 

which implies differences in the three basic comstituents of a model: 

(i) parameters, (ii) assumptions, and (iii) criteria. 

The realm of the job sequencing problem can be decomposed into 

two general groups: those in which job arrivals are considered to 

be static and those in which job arrivals are dynamic, that is, varying 

over time. In this dissertation, we will confine ourselves to the 

static or deterministic system. 

In general, with respect to job sequencing problems, systems are 

divided into those with a single processor and those with multiple 

processors. We will be concerned with the latter system. 

Multi-processor systems exhibit almost unlimited varieties of 

arrangements of facilities and of flow of work through the facilities. 

In general, the following list of typical simplifying assumptions is 

made ; 

1. Assumptions concerning jobs 

a. All n jobs are simultaneously available at the beginning of 

the planning period. 

b. Each job is an entity, even though the job is composed of 

individual parts. This eliminates "job splitting" between two or more 
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machines. It also eliminates assembly operations. 

c. No job may be on two processors at the same time. This 

rules out "lap-phasing" in which the same job is started on a second 

operation as soon as a few units are available from the first operation. 

d. The job routing is given and no alternate routings are per

mitted. 

e. No pre-emption is allowed. 

f. The processing time of each job is known and deterministic. 

g. Processing times and setup times are independent of the 

sequence. 

h. All jobs are of equal importance. 

2. Assumptions concerninR machines 

a. All m machines are available at the beginning of the planning 

period euad are ready to take up any of the jobs. 

b. At most one job can be processed on a specific machine at any 

given time. This eliminates processes such as ironworker, heat treating 

ovens, chemical treatment tanks, all of which are commonplace processes 

that handle multiple jobs simultaneously. 

c. There is only one machine of each type in the shop. 

3. Others 

a. In-process inventory is allowed. 

b. Due-dates J if they exist, are fixed. 

In this dissertation, assumptions 2b and 2c concerning machines have 

been removed. In Chapter 2, an algorithm is developed for the multi-
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machines multiple facilities system. In Chapter T, the algorithm is 

modified to remove assumption 2b. Chapter 8 includes a brief discussion 

employing other assumptions. 

C. Criteria 

In sequencing problems, the number of feasible schedules is so 

large that it is uneconomical to enumerate all the feasible schedules 

for any problem beyond relatively small ones. All feasible schedules are 

not equally desirable. A firm has limited resources and the management 

of the firm usually wishes to minimize cost. A few of the important 

costs are : 

(a) operation costs, 

(b) machine idle costs. 

(c) job waiting costs (in-process inventory costs), 

(d) penalty costs if the jobs are late 

The sum total of the above four costs is called the "cost of production" , 

and the scheduling problem is to find that feasible schedule which mini

mizes the cost of production. "Generally, research workers in the field 

of scheduling have adopted a simple measure of performance, called the 

make-span (or maximum flow time) as representative of the cost of 

production" (Gupta, 1971)* Maximujn flow time is defined as the elapsed 

Lime between the start of the first job in the sequence on the first 

machine. In tr.ic dissertation the maximum flow tine criterion is used 

as a measuare of performance. Chapter 8 presents a brief discussion 

on the evaluation of this criterion. 
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D. Methodologies 

There are basically four different approaches used in solving 

sequencing problems: (a) combinatorial, (b) general mathematical 

programming, (c) reliable heuristics, and (d) Monte Carlo sampling 

(Elmaghraby, 1968a). 

1. Combinatorial approaches 

Combinatorial approaches rely on changing one permutation to 

another through the "switching around" of jobs that satisfy a given 

criterion. The fundamental concept in this approach is best expressed 

by the following theorems due to Smith (1956). 

Theorem 1: Let f(Q) be the measure of any permutation Q of jobs 

{1, 2, ..., n}. It is desired to minimize its value. Let Q* be 

a given permutation. Then a sufficient condition that f(Q*) - f(Q) 

for all permutations 0. of the n job is that: 

(i) There is a real valued function of ordered pairs of elements 

such that if Q is any permutation and Q' is the permutation ob

tained from Q by interchanges of the ith and (i+l)st elements, 

then f(Q) - f(Q') if g(q̂ , q̂ ^̂ ) -

(ii) Q* is such that the ith job precedes the jth job if 

g(i,j) < g(j,i). 

Theorem 2: Let Q be any permutation of the n jobs» Q s (l, 2, = 

i, j, ..., n) and let f(Q) be a bounded function of satisfying con

dition (i) of Theorem 1 if f(Q,) can be represented as 
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f(Q) = g(i,j) 0${Q - (i,ô)i , where the symbol "o" denotes a 

binary operation which preserves inequalities on the real line, 

{Q - (i,j)} denotes the sequence Q minus the pair i and in that 

order, and $ is a monotone function of g(i,j). 

The proof of this theorem is given by Elmaghraby (1968b). By 

definition, the operation "o" satisfies the relationship; if a, b, and 

c are three points on the real line, and if a - b, then aoc - boc. 

If Q' = (1, 2, j, i, n). then g(j,i) is ̂  g(i,j). 

Suppose that g(j,i) - g(i,j); then we have 

f(Q') = g(j,i) o$ {(y - (j,i); g(j,i)} 

- g(i,j) {Q' - (j,i); g(j,i)} by property of "o" 

- g(i,j) 0$ {Q - (i,j); g(i,j)} by property of "o" and 
monotonocity of in g 

= f(Q). 

This combinatorial approach was the basis for the papers by Jackson 

(1956), Johnson (195̂ ), and Smith (1956). 

2. General mathematical prograirnninp; 

General mathematical programming includes linear, dynamic, quad

ratic and convex programming, integer programming, networks of flow, 

Lagrangian methods, and the like. 

Bowman (1959), Wagner (1959), Manne (I96O), and Balas (1967) 

regard the scheduling problem as a conventional programming 
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problem and suggest a linear programming solution with integer 

constraints on its solution. Based on the structural arguments of the 

problem, some integer constraints are listed and the objective func

tion is defined as the minimization of the maximum flow time. This 

formulation of scheduling problems is sound from a mathematical view

point. However, due to excessive computational requirements, the cost 

of obtaining results is prohibitive even for small sized problems 

(Story and Wagner, I963). 

Dynamic programming has also been used with some success in formu

lating and solving the combinatorial problems. But in most instances, 

this formulation has served as a means of demonstrating its effective

ness only in small size problems. 

3. Reliable heuristics 

Reliable heuristics are sometimes known as "combinatorial programming" 

or "controlled enumeration." In essence, they are problem-solving pro

cedures developed on the basis of two principal concepts: the use of 

a controlled enumeration technique for considering all potential solu

tions and the elimination from explicit consideration of particular solu

tions which are known from dominance, bounding, and feasibility con

siderations to be unacceptable. 

An alternate name for such programs is branch-and-bound (Elmaghraby, 

1968a) the name given to the ideas employed by Little, Murry, Sweeney 

and Kamel (I963) in their algorithms for solving the travelling sales

man problem. The "branch" notion stems from the fact that in terms of 
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a tree the procedure In continually concerned witli choosing a branch 

of the tree to elaborate and evaluate. The "bound" term denotes their 

emphasis on the effective use of means for bounding the value of the 

objective function at each node of the tree both for eliminating domi

nated parts and for selecting a branch for elaboration and evaluation. 

The efficiency of the branch-and-bound procedure largely depends 

on lower bounds used in the process of generating schedules (Gupta, 

1970; Nabeshima, 1967b). The papers by Î nal and Schraze (19̂ 5)» 

Nabeshima (1967a), Gupta (1970), Ashour (1970) describe several bound

ing procedures which can be used in selecting a branch. However, the 

efficiency of the algorithm does not necessarily increase with the in

crease in the effectiveness of lower bounds because of excessive computa

tions required in calculating the bounds (Ashour and Quraishi, 1969; 

Nabeshima 1967a; Gupta, 1970). 

The two important points emphasized by Elmaghraby (1968a) can be 

mentioned here. First, reliable heuristic approaches guarantee 

the eventual finding of an optimal solution. "Second, such approaches 

need not have their upper limit on the number of alternatives generated in 

the complete space of all possible sequences. In some instances, the 

upper limit is much smaller than that, such as the number of alterna

tives that would be generated by some mathematical programming approaches. 

(The problem treated by Elmaghraby and Cole (I963) has its upper 

bound on the nodes of the decision tree the 2̂  nodes of the dynamic 

progranuning formulation of the same problem, which is much smaller than 

the complete space of all possible sequences, which is n!). In these 
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instances, the approach through reliable heuristics can never do worse 

(from a computing point of view), and in all probability will do much 

better, than the best mathematical programming approach!" 

4. Monte Carlo 

Monte Carlo experimentation has been used in two somewhat different 

applications. 

The natural "habit" of the Monte Carlo technique is evidently in 

stochastic systems, i.e., in systems in which the parameters vary in 

a probabilistic fashion over time. Since we will be concerned only 

with the deterministic sequencing system, our discussion on Monte Carlo 

approach will be made in a completely different context. 

In Monte Carlo methods, schedules are generated at random and 

after "enough" schedules have been obtained, the best of them is 

retained. Chances of achieving a near-optimal solution are good if 

enough schedules are generated. 

The primary advantage of a Monte Carlo approach is that a solution 

for a large complex problem can be obtained in a reasonable length of 

time, especially with the development of computer technology. Almost 

any sequencing problem can be approached by Monte Carlo methods since 

these procedures are easily stated and readily understood. Such a 

method allows "tentative" results to be obtained early for new se

quencing problems without regard to the availability of algebraic solu

tion procedures, constraints, or algorithm convergence. 

A Monte Carlo version of the Giffler-Thompson program (i960) 
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does not guarantee the finding of an optimal schedule, but it does permit 

the computation of a fairly large number of feasible schedules chosen 

at random in a reasonable amount of time; consequently, the shortest 

one found can then be chosen. By continuing the process long enougt 

it is possible to make the probability of not having observed an opti

mal schedule very small. Of course, the cost of computation must also 

be considered. 

Heller and Logemann (1962) describe a Monte Carlo approach from a 

graph-theoretic point of view, as opposed to the Gantt-chart approach 

which motivated Giffler and Thompson (1960). This approach can generate 

schedules more rapidly than Giffler and Thompson procedure. "This 

time estimate is about half that tentatively reported by Giffler and 

Thompson" (Heller and Logemann, I962). 

Heller and Logemann (19̂ 2) indicated that a potential area "for 

further research" was the modification to give a better subset of 

feasible schedules by using the concept of left-shifting which permits 

an operation to "jump over" another operation into an interval of the 

time if that interval is large enough to accommodate the shifted 

operation. This is the starting point of the research for this disserta

tion. The Monte Carlo algorithm that we will develop will be for multi-

machine facilities with the concept of left-shifting incorporated. 

This algorithm will be further modified to relax assumption 2 con

cerning machines as mentioned in section B. This modified algorithm 

can then be applied, as we shall see in Chapter J, for transportation 

problems. 
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Two factors pose potential severe limitations on the utility of 

Monte Carlo methods for solving sequencing problems : the efficiencies 

of the algorithms and the rules for halting the sampling processes. 

The random generation of sequences can be quite inefficient since 

such sequences are often far from optimal. Therefore, much 

computational effort is spent in generating sequences of mediocre 

value. However, neighborhood search techniques, as proposed by Reiter 

and Sherman (I965) tend to increase the efficiency of the Monte Carlo 

techniques by searching exhaustively all sequences in the neighborhood 

of a given solution. Various dispatch rules, such as those described 

by Conway, Maxwell and Miller (1967), are also available for improving 

the efficiency of Monte Carlo methods. Giffler, Thompson and Van Ness 

(1963) showed that a Monte Carlo process that uses rules as guides in 

its random choices will be considerably superior to a purely random 

choice device= In fact» Fisher «nd Thompson (1963) devised some learn

ing strategies to guide the program in its use of rules. In this 

dissertation, biasing techniques are used to improve efficiency of the 

randomly generated solutions. 

Another important aspect of the Monte Carlo approach is the need for 

rules to stop the sampling procedures. Tis problem has been recognized 

by many. In this respect, Heller's (196O) observation is worthwhile to 

mention. "By combinatorial means rooted partly in a lattice-theory 

framework, it has been shown that although there are many possible 
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schedules there are far fewer different schedule times. Because of 

the relatively small number of different schedule times for any given 

set of processing times, we might expect the probability distribution 

of the schedule times over the set of all schedules to have a simple 

form." He concludes that "bhe numerical experiments show that the distri

bution of schedule times is normal; theoretical analysis indicates that 

the schedule times are asymptotically normally distributed for schedules 

with a large number of jobs." The argument continues'that this normality 

can be used to determine decision-theoretical rules to terminate sampling 

when the cost of continued sampling exceeds the expected gain from 

further sampling. This argument motivated different researchers such 

as Elmaghraby (1968a) to define closed form stopping rule functions. 

As we shall see in Chapter 3, Elmaghraby (1968a) himself casts some 

arguments against his own stopping rule function. There is some ques

tion about the asymptotic normality of the distribution, but aside 

from that there are at least two obstacles that lie in the path of a 

practical procedure (Conway, Maxwell and Miller, I967): 

(a) If the distribution of schedule-times is approximately and/or 

asymptotically normal, the departures from normality will be most 

pronounced in the tails of the distribution, which is precisely the 

area of interest. No one is concerned with estimating the mean of 

the schedule time distribution for a particular problem. 

(b) Ifc is inconceivable that anyone would be sampling from this 

distribution, for there are obviously more efficient subpopulations 

readily available. 
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By Bayesian analyses, Randolph (1968) proposed a multinomial 

stopping rule for Monte Carlo sampling. Different aspects of this rule 

have been presented in Chapter 3. 

In the study of the behavior of the extreme points in samples 

drawn from a bounded population, the theory of extreme values plays an 

important role. "Based on the assumption that the'observed phenomena 

can be described by the limiting distributions of greatest (or smallest) 

values in random occurrences, the theory has been applied to a variety 

of engineering and astronomical problems" (Bae, 1972). An application 

of the theory to the combinatorial problems first appeared in plant 

layout problems fMcRoberts, 19T1). This will be discussed in Chapter 3 

and Chapter 6. 

In Chapter 3, we have suggested some distribution-free stopping 

rules for halting the sampling procedure. These stopping rules which 

are easily understandable have been incorporated in the algorithm pre

sented in this dissertation. 

D. Summary of Research Objectives 

In Chapter 2, a Monte Carlo algorithm will be developed for the 

multi-machines multiple facilities system. Left-shifting principle will 

be incorporated in the algorithm to get a better subset of the feasible 

solutions. The algorithm will work irrespective of whether the machines 

at a particular work center are either identical or not. 

Chapter 3 discusses the different distribution-free stopping rules 

to be used in the algorithm for halting the Monte Carlo sampling. 
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Chapters it and 5 present analyses of different sample problems. 

Different parameters such as minimum schedule time, sample size needed, 

CPU time, distribution of the schedule time, etc. , will be examined. 

The effects of the left-shifting principle and different biasing tech

niques in improving the efficiency of Monte Carlo sampling will be 

studied. 

Chapter 6 gives some statistical analysis of the solutions. The 

main parameters of interest are the estimated minimum and the proba

bility of further improvement of the solution. The Weibull distribu

tion will be used as a tool to estimate the minimum bound value of the 

schedule time. 

Chapter T shows a modification of the algorithm in Chapter 2 which 

is applied to a transportation-type problem. This modified version is 

also applicable to a system where one or more machines can process 

different jobs simultaneously-

Chapter 8 presents some guidelines for further research. 
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II. SCHEDULING ALGORITHM 

A. Introduction 

This chapter will deal with the actual development of an al

gorithm to minimize maximum flow time for multi-machine facilities 

with the concept of left-shifting incorporated in the algorithm. The 

following simple problem will be considered for illustration. 

Consider five jobs and three facilities. Each of two facilities, 

A and B, has two machines with different efficiencies for doing the 

same operation. The two machines in facility A are A1 and A2, 

and those in B are B1 and B2. Facility C has only one machine. 

The problem has technological orderings and processing times as given 

in Tables 2.1 and 2.2., respectively. 

Table 2.1. Technological orderings 

Job Operations 

1 2 

1 A1 A2 C A1 A2* 

2 B1 B2 A1 A2 

3 C B1 B2 0 

1; A1 A2 B1 B2 

5 C A1 A2 
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Table 2.2. Processing times 

Job Operations 

1 2 

12 3 6 

2 8 9 2 5 

3 3 3 

k 3 k S \  

5 2 5 7 

For the sake of illustration of the algorithm, A, B and C 

will refer to facilities 1, 2 and 3, respectively. A1 and A2 

will refer, respectively, to machines 1 and 2 of facility 1. 

Similarly, B1 and B2 denote the machines 1 and 2 in facility B. 

Let us now denote each of the operations by a quadruple of 

integers (ijk&), where 

i: facility 

j: machine within facility 

k: job to be processed 

£: jj,th time job k is in machine j of facility i. 

For example, Table 2.1 refers to operation number 3 of job 1 in 

machine A2 marked *. Here, 

facility: A => i=l 

machine: A2 => j=2 

job: 1 => k=l 
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second time job 1 in facility A => £ = 2 

so, the operation will be denoted by (1212). 

B. Computer Aspects of the Algorithm 

In section D, we will see that we have to pass through different 

iterations to come up with a feasible solution. Each iteration con

tains seven columns. The entries of some of the columns will remain 

the same and some will change as we proceed with the algorithm. 

Every time, before we start to generate a feasible solution, the 

entries of all the columns are to be changed to their initial values. 

The different columns have the following interpretations. 

Table 2.3. Columns 1 and 2 

Column 1 Column 2 

Operations designation Operation/operations 
(if any) that immediately 
follow operations in 
column I 

Operations in columns 1 and 2 will be put into the notation ijk£ 

as mentioned in section A. Column 1 will contain all the operations, 

some of which will become inactive as the algorithm proceeds and will 

never be executed. This is because some operations are mutually 

exclusive in multi-machine facilities. 

The number of operations in column 2 is 0, 1, or more than 1, 

depending on whether the operation in column 1 is, respectively, the 



www.manaraa.com

18 

last operation of any job or the following operation will be processed 

in a single or multi-machine facility. 

Table 2.k. Columns 3, U and 5 

Column 3 Column k Column 5 

Switch indicating Processing time Index signifying 
the state of the of the operation the number of times 
operation in col- In column 1 machine has been used 
umn 1 

The entries in column 3 are 1, 0 and -1 indicating the 

state of the operation in column 1 in the following manner: 

1 => not scheduleable 

0 => scheduleable 

-1 => scheduled 

Initially, all the entries in column 5 are zero. 

Table 2.5. Columns 6 and T 

Column 6 Column 7 

Starting time of the Completion time of the 
operation in column 1 operation in column 1 

Initially, all the entires in columns 6 and T are zero. It is to 

be noted here that the entries in columns 5, 6 and T can have realistic 
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meanings only when the corresponding operation in column 1 has been 

processed. 

The different important arrays used in the computer program are : 

ICI: which job to be processed 

IC2: which job must follow 

IC3: switches of column 3 (l, 0, -l) 

ICU: processing time 

IC5: indexes indicating number of times the machines 
have been engaged 

IC6: starting time of the operations 

ICT: completion time of the operations 

ISAVE: the best solution found so far from sampling 

IDT: total processing time for each sample 

ICS3: track on the initial setting in IC3 

IKD: number of entries in IC2. 

ICI and IC2 remain the same during the entire sampling process. IC3 

changes its value, but its initial setting is stored in ICS3. IC5, 

IC6,- and ICT are initially set to zero before sampling begins. 

IFIND is the row corresponding to the operation selected for process

ing, and MJM refers to the maximum tine. 

The program can handle 500 operations and generate 1500 schedules. 

Steps of the computer program are as follows : 

Step 1. Resolving or initializing: Resolve the data and make the 

proper entry to each of the arrays from ICI to ICT. If any schedule 
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is already found, reinitialize all the entries. 

Step 2. Randomization in selecting a process: Randomization proce

dures will be discussed in section C. Check IC3 to see if there is 

a zero in any row. If no zero entry is found, a feasible schedule 

has been obtained and step 6 follows. Otherwise, count the number of 

zeros and select one of the processes at random. IFIND is the row 

selected by randomization. Turn the switches from 0 (or l) to -1 

corresponding to IFIND and its counterparts. 

Step 3. Job time and machine time: Calculate maximum job time MJM 

and maximum machine time corresponding to IFIND. If generation of 

schedules by left-shifting is desired, go to step 9; otherwise, 

process the operation ah max (Maximum machine time and HJM). This 

is Cg. 

atep 4. Adjustments after processing: Put in IC6. To this value 

add the entry in ICU and put it in ICJ. Find the maximum entry 

(MAXM = IMAX) in IC5 corresponding to this machine; increase it 

by 1 and put it in column 5- Note that all these changes are made 

with respect to IFIND. 

Step 5. Operations to follow; Check IC2. If there is no entry 

corresponding to IFIND, go to step 2. Otherwise, count the number 

of operations (NC) that are associated with IC2. Select one 

operation at random. Turn the switch on in ICS from 1 to 0 for 

this operation. Go to step 2. 
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Step 6. Schedule time: Find the maximum value in ICT. This is the 

schedule time Ĉ . If this is less than or equal to the best previous 

Cj, write out this tableau. 

Step 7. Stopping rule; Update NPROB (number of feasible solutions) 

by 1. If NPROB is not a multiple of the specified sample size, go 

to step 1. Otherwise, call the desired stopping rule and check the 

criterion. If it is met, step 8 follows; otherwise, go to step 1. 

Step 8. Printout: Print all of the processing times found so far in 

descending order. The program is terminated at this point. 

Left shifting; 

Step 9: Check IC5 and find maximum number of times the machine 

is used (MAXM). If MAXM = 0, process the operation starting 

at MJM and go to step 4; otherwise, step 10 follows. 

Step 10: Check Cg and Ĉ  corresponding to the ith entry 

of IC5 corresponding to machine in IFIND. If - MJM, then 

check whether i = MAXM, If it is, process job at MJM and go to 

step 4. Otherwise, go to the next entry (i = i+l) and repeat the 

process until Ĉ  ̂> MJM. Now, if Ĉ  ̂- MJM, go to step 12. 

Otherwise, step 11 follows. 

Step 11; Check the interval between MJM and the starting point 

of the job corresponding to ith entry, i.e., 

lAVA = Cf. - MJM 
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Check IC4 and find the processing time INTV. If lAVA - INTV, then 

increase all the positive entries except less than i in IC5 by 1, 

and then process the job in that interval starting at MJM and go to 

step 4 to make the necessary adjustments; otherwise, step 12 follows. 

Step 12; Check if ith entry is equal to MAXM. If it is, 

process the job at maximum machine time and go to step Otherwise, 

go to the next entry and find the interval 

lAVA = Cg.+i - Cy.. 

If lAVA - INTV, increase all the positive entries greater than i 

in IC5. All these changes correspond to the machine in IFIND. 

Process the job in that interval and go to step U to make the 

necessary adjustments. If lAVA < INTV, go to the next entry of 

IC5 and continue the process. If nothing is found up to and includ

ing MAXM, then set ICUT to 0 (no left shifting is possible) and 

proceed to process the job at max (Maximum machine time and MJM) 

and go to step 4. 

C. Random Selection of a Process 

There are two procedures by which random selection of a process 

can be accomplished. Both procedures generate numbers by using an 

available computer routine called RANDU (IX, lY, XX), where 

IX = starting number 

lY = a number generated by the subroutine 

After each operation, IX is given a value equal to lY in order to 

have a different starting number in a later call statement. 
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XX = a random number generated between 0 and 1 

Procedure 1; Let us assume that we have three processes and we have 

to select one at random. By using the subroutine, XX is generated 

with the result being 

XX - 1/3 => select process 1 

XX£(1/3J 2/3) => select process 2 

XX - 2/3 => select process 3 

Procedure 2; The random selection of any process in this dissertation 

has been based on a procedure different from the above. 

Let us suppose the number of processes is b. After generating 

XX as before a new value of XX, XX*, is calculated as follows: 

XX* = XX(b-l) +1.5 

where XX is a real random variable uniformly distributed between 

0 and 1. A process is selected corresponding to the value of XX** 

which is an integer obtained after dropping the decimal part in XX*. 

D. Discussion of Iteration Procedure 

Referring to the discussion in the previous sections, let us now 

proceed to apply the algorithm to the problem given in section A. 

CLl, CL2, CL3, CL4, CL5, CL6 and CL7 refer to the seven columns 

of the tableaus in different iterations. 

In Table 2.6 the problem has been defined completely in algorithmic 

notations, showing the technological orderings between the operations. 

The processing times have been entered in column 4. 
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Table 2.6. Iteration 0 

CLL CL2 CL3 CLU CL5 CL6 CLl 

1111 3111 0 2 0 0 0 

1112 1 k 0 0 0 

1121 1 2 0 0 0 

ll4l 2l4l, 2241 0 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 0 • k 0 0 0 

1212 1 7 0 0 0 

1221 1 5 0 0 0 

12Hl 2lUl, 22lH 0 k 0 0 0 

1251 1 7 0 0 0 

2121 1121, 1221 0 8 0 0 0 

2131 3132 1 3 0 0 0 

2141 1 6 0 0 0 

2221 1121, 1221 0 9 0 0 0 

2231 3132 1 5 0 0 0 

22kl 1 7 0 0 0 

3111 1112, 1212 1 6 0 0 0 

3131 2131, 2231 0 2 0 0 0 

3132 1 II 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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To start the scheduling procedure of the example problem, we see 

that certain operations are scheduleable; i.e. , there are 0 entries in CL3 

corresponding to these operations. 

Iteration 1; From the scheduleable operations, 1111, llAl, 1211, 

1241, 2121, 2221, 3131, 3151, let us randomly select 1211. We turn 

the switches in IC3 corresponding to 1211 and its counterpart 

1111 from 0 to -1. 

Job 1 was not processed, and the machine was not engaged 

previously. So 

max (Maximum machine time and MJM) = max (0,0) = 0 

which means starting time is 0, and the completion time is 0 + 

= 0 + h = k. The index corresponding to IFIND in IC5 is increased 

by 1 which updates MAXMJ to 1. 

The identification in column 2 corresponding to IFIND is 1111. So 

the switch in IC3 corresponding to 3111 is reset from 1 to 0, 

showing that the operation is now scheduleable. All these changes have 

been reflected in Table 2.7. 

Iteration 2: Now we have the possibility of scheduling one of the 

operations llkl, 12̂ 1, 2121, 2221, 3111, 3131, 3151. Let us suppose 

we select 2l21. We turn the switches in ICS corresponding to 

2121 and its counterpart 2221 from 0 to -1. Job 2 was not 

processed, and the machine was not engaged previously. So, max 

(Maximum machine time and MJM) = max (0,0) = 0. 
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Table 2.7. Iteration 1 

CLL CL2 CL3 CLL; CL5 CL6 CLT 

1111 3111 -1 2 0 0 0 

1112 1 4 0 0 0 

1121 1 2 0 0 0 

11kl 2l4l, 22kl 0 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 h 1 0 k 

1212 1 7 0 0 0 

1221 15 0 0 0 

12kl 21kl, 22kl 0 k 0 0 0 

1251 1 7 0 0 0 

2121 1121, 1221 0 8 0 0 0 

2131 3132 13 0 0 0 

2lkl 16000 

2221 1121, 1221 09000 

2231 3132 15000 

22kl 1 7,0 0 0 

3111 1112, 1212 06000 

3131 2131, 2231 0 2 0 0 0 

3132 1 k 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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So the starting time is 0 and the completion time is 0 + = 0 + 8 = 8. 

MAXMJ = 0, so the index in IC5 is now increased to 1. In column 2 

corresponding to IFIKD, there are two operations, 1121, 1221. Let 

us randomly select 1221 and turn the switch in IC3 corresponding to 

1221 from 1 to 0. Table 2.8 reflects the above changes. 

Iteration 3: Among the schedule able operations 11̂ -1, 1221, 12kl, 

3111, 3131, 3151, we randomly select 3111 and turn the switches in 

IC3 as before. Now machine 3 was not previously engaged, but job 1 

was processed in machine 1. Therefore, 

max (Maximum Machine time and ÎUM) 

= max (0, 4) = 1+ 

So, the starting time is 4 and completion time is b + 6 = 10. 

Adjustment in IC5 is made as outlined above. From column 2, 

we randomly select 1112 and make the necessary adjustment in IC3 

corresponding to 1112 as before. These are shown in Table 2.9. 

Iteration h: Among the scheduleable operations 1112, llAl, 1221, 

12kl, 3131, 3151» we randomly select 3131. Here MJM = 0 and 

corresponding to the 1st operation on the machine is k. So lAVA 

(g a p )  =  C g  -  MJ M  = 4 - 0 = 4 .  

INn = Cĵ  (IFIND) = 2 

So, lAVA > INTV. We thei ire process the Job in the gap corresponding 

to lAVA and increase the positive entry in IC5 corresponding to this 
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Table 2.8. Iteration 2 

CLl CL2 CL3 CL4 CL5 CL6 CL7 

1111 3111 -1 2 0 0 0 

1112 1 h 0 0 0 

1121 1 2 0 0 0 

lllil 2lhl, 22hl 0 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 h 1 0 h 

1212 1 T 0 0 0 

1221 0 5 0 0 0 

12kl 211+1, 22kl 0 4 0 0 0 

1251 1 T 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 1 3 0 0 0 

2lkl 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 1 5 0 0 0 

2241 1 T 0 0 0 

3111 1112, 1212 0 6 0 0 0 

3131 2131, 2231 0 2 0 0 0 

3132 1 k 0 0 0 

315] 1151, 1251 0 2 0 0 0 
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Table 2.9. Iteration 3 

CLl CL2 CL3 CLU CL5 CL6 CL? 

1111 3111 -1 2 0 0 0 

1112 0 k 0 0 0 

1121 1 2 0 0 0 

11kl 21kl, 22kl 0 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 k 1 0 k 

1212 1 7 0 0 0 

1221 0 5 0 0 

12kl 21kl, 22kl 0 k 0 0 0 

1251 1 7 0 0 

2121 1121, 1221 -1 8 1 0 '8 

2131 3132 1 3 0 0 0 

21À1 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 1 5 0 0 0 

22kl 1 7 0 0 0 

3111 1112, 1212 -1 6 1 k 10 

3131 2131, 2231 0 2 0 0 0 

3132 1 k 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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machine by 1. Other adjustments are made as usual. This iteration is 

shown in Table 2.10. In the incomplete Gantt chartŝ  shown in 

figures 2.1 and 2.2, we see the improvement by left shifting accom

plished in this iteration. 

A2 

2 h 6 8 10 

Figure 2.1. Left-shifting 

A2 

C 

2 k 6 8 10 12 

Figure 2.2. Non-left-shifting 

n̂ the Gantt charts shown in figures 2.1 and 2.2, the horizontal 
and the vertical axes, respectively, refer to time scale and machines. 
The numbers above the horizontal bars refer to the job numbers. This 
notation will be used in subsequent Gantt charts. 
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Table 2.10. Iteration 4 

CLL CL2 CL3 CL4 CL5 CL6 CL7 

1111 3111 -1 2 0 0 0 

1112 0 4 0 0 0 

1121 1 2 0 0 0 

ll4l 2l4l, 2241 0 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 4 1 0 4 

1212 1 7 0 0 0 

1221 0 5 0 0 0 

12itl 2l4l, 2241 0 4 0 0 0 

1251 1 7 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 31-32 1 3 0 0 0 

2lkl 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 0 5 0 0 0 

2241 1 7 0 0 0 

3111 1112, 1212 -1 6 2 4 10 

3131 2131, 2231 -1 2 1 0 2 

3132 1 4 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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Iteration 5: Among the scheduleable operations 1112, llbl, 1221, 

124l, 2131 and 3151, we randomly select 1221 and process this 

operation as usual. The switch in IC3 corresponding to IFIND changes 

from 0 to -1 and for 1121 (its counterpart) from 1 to -1. 

All other adjustments are made as before. This iteration is shown in 

Table 2.11. 

Iteration 6; From the set of scheduleable operations 1112, llU, 

12'kl, 2131 and 3151» 12Ul is randomly selected. Here, MAXM = 2 

and MJM =0. We check the first positive entry in IC5 corresponding 

to IFIND. We check lAVA. 

lAVA = Cg - MJM =0-0=0 

and, lAVA < INTV = (IFIND) = 2. This implies that left 

shifting is not possible and we proceed to the next higher integer in 

IC5 which is 2. Here corresponding to entry 1 of IC5 and 

Cg corresponding to entry 2 of IC5 are greater than MJM and 

lAVA (gap) = 8 - U = U > INTV = 2; 

so left shifting is possible and we can process this job in that 

interval. We must also update entry in IC5 by changing the entry 2 

to 3. All other adjustments are made as outlined before. This 

iteration is shown in Table 2.12. Incomplete Gantt charts are shown 

in figures 2.3 and 2 . k .  



www.manaraa.com

33 

Table 2.11. Iteration 5 

CLL CL2 CL3 CL4 CL5 CL6 CL7 

nil 3111 -1 2 0 0 0 

1112 0 4 0 0 0 

1121 -1 2 0 0 0 

llkl 2141, 2241 0 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 4 1 0 4 

1212 1 7 0 0 0 

1221 -1 5 2 8 13 

1241 2l4l, 2241 0 4 0 0 0 

1251 1 T 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 1 3 0 0 • 0 

2141 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 0 5 0 0 0 

2241 1 7 0 0 0 

3111 1112, 1212 -1 6 2 4 10 

3131 2131, 2231 -1 2 1 0 2 

3132 1 4 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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Table 2.12. Iteration 6 

CLl CL2 CL3 CL4 CL5 CL6 CL7 

1111 3111 -1 2 0 0 0 

1112 0 4 0 0 0 

1121 -1 2 0 0 0 

1141 2l4l, 2241 -1 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 0 1 0 4 

1212 1 7 0 0 0 

1221 -1 5 3 8 13 

1241 2l4l, 2241 -1 4 2 4 8 

1251 1 7 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 1 3 0 0 0 

211+1 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 0 5 0 0 0 

2241 0 7 0 0 0 

3111 1112, 1212 -1 6 2 4 10 

3131 2131, 2231 -1 2 1 0 2 

3132 1 4 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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A2 4 2 
-4-

-3_ , 1 

1-
2 1). 6 8 10 12 13 

Figure 2.3. Left-shifting 

A2 

• I—' I 1 1 I 1 1 11— 

2 4 6 8 10 12 iH l6 17 

Figure 2.4. Non-left-shifting 

Iteration J: We select randomly 1112 from the scheduleable set of 

operations 1112, 2131, 2kl0 and 3151 and process it as before. This 

iteration is shovn in Table 2.13. 
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Table 2.13. Iteration 7 

CLl CL2 CL3 CLU CL5 CL6 CL7 

1111 3111 -1 2 0 0 0 

1112 -1 h 1 10 Ik 

1121 -1 2 0 0 0 

ll4l 2lkl, 22kl -1 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 -1 h 1 0 It 

1212 -1 7 0 0 0 

1221 -1 5 3 8 13 

12kl 2l4l, 22kl -1 4 2 k 8 

1251 1 7 0 0 0 

2121 1121, 1212 -1 8 1 0 8 

2131 3132 1 3 0 0 0 

2lkl 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 0 5 0 0 0 

2241 0 7 0 0 0 

3111 1112, 1212 -1 6 2 k 10 

3131 2131, 2231 -1 2 1 0 2 

3132 1 It 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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Iteration 8; We select randomly 2231 from the scheduleable set of 

operations 2231, 22̂ 1 and 3151 and process it as before. Referring to 

figures 1 and 2, we see that the process starts at time 2 in left 

shifting and at 12 in non-left shifting. Adjustments have been shown 

in Table 2.lU. 

Iteration 9: From the scheduleable set of operations 22̂ 1, 3132, 

3151, we randomly select 3132 and process this operation. Adjustments 

are shown in Table 2.15. 

Iteration 10: From the scheduleable set of operations 22̂ 1 and 3151, we 

randomly select 22̂ 1. Here, max (Maximum machine time, MJM) = max (7,8) 

= 8. So the process must start at 8 and is completed at 15. All 

the adjustments are shown in Table 2.16. 

Iteration 11; We now select the only possible scheduleable operation 

315I; Here MJM = 0 and MAXM = 3= We check the first positive entry 

in IC5 corresponding to IFIND and check lAVA. Here, lAVA = 

-  MJ M  = 0 - 0 = 0 .  
o 

So lAVA < INTV = 2 and no left shifting is possible. We now 

check lAVA with Cg corresponding to entry 2 and corres

ponding to entry 1 for this machine. 

lAVA = Cg-Ĉ  = it-2 = 2 

Now lAVA = INTV and left shifting is possible. We process this 

job in this interval and increase all positive entires in IC5 except 1 
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Table 2.lk. Iteration 8 

CLl CL2 CL3 CLit CL5 CL6 CL7 

1111 3111 2 0 0 0 

1112 h 1 10 lU 

1121 2 0 0 0 

llkl 2lkl, 2241 3 0 0 0 

1151 1 5 0 0 0 

1211 3111 1 - k 

1212 7 0 0 0 

1221 -1 5 3 8 13 

I2UI 2l4l, 22kl -1 h 2 h 8 

1251 1 7 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 -1 3 0 0 0 

21U1 1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 -1 5 1 2 7 

22kl 0 7 0 0 0 

3111 1121, 1221 -1 6 2 It 0 

3131 2131, 2231 -1 2 1 0 2 

3132 0 It 0 0 0 

3151 1151, 1251 0 2 0 0 0 
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Table 2.15. Iteration 9 

CLl CL2 CL3 CL̂  CL5 CL6 CL? 

1111 3111 

1112 

1121 

llUl 2l4l, 2241 

1151 

1211 3111 

1212 

1221 

121+1 2lkl, 22kl 

1251 

2121 1121, 1221 

2131 3132 

2lkl 

2221 1121, 1221 

2231 3132 

22kl 

3111 1112, 1212 

3131 2131, 2231 

3132 

3151 1151, 1251 

-1 2 0 0 0 

-1 It 1 10 lit 

-1 2 0 0 0 

-1 3 0 0 0 

1 5 0 0 0 

-1 k 1 0 It 

-1 7 0 0 0 

-1 5 3 8 13 

-1 h 2 It 8 

1 7 0 0 0 

-1 8 1 0 8 

-1 3 0 0 0 

1 6 0 0 0 

-1 9 0 0 0 

-1 5 1 2 7 

0 7 0 0 0 

-1 6 2 It 10 

-1 2 1 0 2 

-1 It 3 10 lit 

0 2 0 0 0 
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Table 2.l6. Iteration 10 

CLl CL2 CL3 CLl| CL5 CL6 CL7 

1111 3111 -1 2 0 0 0 

1112 -1 k 1 10 ik 

1121 -1 2 0 0 0 

11kl 21kl, 22kl -1 3 0 0 0 

1151 1 5 G 0 0 

1211 3111 -1 k 1 0 k 

1212 -1 7 0 0 0 

1221 -1 5 3 8 13 

12kl 21kl, 22kl -1 k 2 k 8 

1251 1 7 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 -1 3 G 0 û 

2141 -1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 -1 5 1 2 7 

2241 -1 7 2 8 15 

3111 1112, 1212 -1 6 2 k 10 

3131 2131, 2231 -1 2 1 0 2 

3132 -1 k 3 10 Ik 

3151 1151, 1251 G 2 0 0 0 
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corresponding to this machine. All other adjustments have been made 

as usual and are shown in Table 2.IT. The left shifting is shown in 

the final Gantt chart, figure 2.5 after the last iteration 12. 

Iteration 12 : We now select the only scheduleable operaton 1151. 

Here MJM = U and Cg corresponding to the first positive entry in 

IC5 is 10. We again must calculate lAVA. 

lAVA = 10 - U = 6 > INTV = (IFIND) = 5 

which implies left shifting is possible. We process this last opera

tion in this interval and increase the only positive entry in IC5 by 1. 

.y.1 other adjustments have been made as usual and are shown in Table 

2.18. We notice that there is no zero entry in CL3 which means 

we have obtained a feasible schedule. 

Next we check ICT and see that the highest entry in this 

arrŝ '- is 15. This represents the total processing time for this 

schedule by left shifting procedures. 

The final Gantt charts are shown in figures 2.5 and 2.6. 
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Table 2.17. Iteration 11 

CLl CL2 CL3 CLU CL5 CL6 CL? 

1111 3111 -1 2 0 0 0 

1112 -1 k 1 10 ik 

1121 -1 2 0 0 0 

llUl 21kl, 22kl -1 3 0 0 0 

1151 0 5 0 0 0 

1211 3111 -1 k 1 0 k 

1212 -1 7 0 0 0 

1221 -1 5 3 8 13 

12kl 21kl, 22kl -1 k 2 k 8 

1251 1 7 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 -1 3 0 0 0 

21kl -1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 -1 5 1 2 7 

22kl -1 7 2 8 15 

3111 1112, 1212 -1 6 3 k 10 

3131 2131, 2231 -1 2 1 0 2 

3132 -1 k k 10 Ik 

3151 1151, 1251 -1 2 2 2 k 
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Table 2.18. Iteration 12 

CLl CL2 CL3 CLi+ CL5 CL6 CLl 

1111 3111 -1 2 0 0 0 

1112 -1 k 2 10 lU 

1121 -1 2 0 0 0 

llkl 2lkl, 22kl -1 3 0 0 0 

1151 -1 5 1 k 9 

1211 3111 -1 k 1 0 h 

1212 -1 T 0 0 0 

1221 -1 5 3 8 13 

12kl 21kl, 2241 -1 1+ 2 k 8 

1251 -1 7 0 0 0 

2121 1121, 1221 -1 8 1 0 8 

2131 3132 -1 3 0 0 0 

2lltl -1 6 0 0 0 

2221 1121, 1221 -1 9 0 0 0 

2231 3132 -1 5 1 2 7 

22kl -1 T 2 8 15 

3111 1112, 1212 -1 6 3 It 10 

3131 2131, 2231 -1 2 1 0 2 

3132 -1 4 k 10 ik 

3151 1151, 1251 -1 2 2 2 k 
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D. Input Format Used in the Computer Program 

1.  F o r m a t  ( )  

The first card in the data set includes four numbers. 

1st number: total number of possible operations 

2nd number: number of schedules (sample size) at multiple of 
which stopping rules are applied 

3rd number : starting random number (must be odd) 

4th number: number of machines in the system 

2. Format (12) 

The second set of data cards refers to the number of operations in 

column 2. In this problem, there are 20 numbers corresponding to each 

operation. Each number is punched in a different data card and 

is arranged according to the arrangement of operations in column 1. 

3. Format (13, (l6)) 

The third set of data cards refers to the entries in the first 

and second columns of any tableau in the algorithm. 

4. Format (12,12) 

The fourth set of data cards refers to the entries in the third 

and fourth columns of Table 6 (Iteration 0). 

E. Output Format of the Computer Output 

Referring to Table 18, in the computer output only CL3» CL5j 

CL6 and CLT are printed. In CL5, CL6 and CL7 of Table l8, there are 

some zero entries. It means the operations corresponding to those 
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entries have never been processed. Because this is a multi-machines 

facility system, other machines in the facility were used to perform 

those operations. 

F. Input Stream for the Sample Problem 

Columns + 1 2 3 k 5 6 7 8 9 10 11 12 13 ik 15 I6...8O 

2 0  5 0  2 1 7  5  

1 

0 

0 

2 

2 

1 1 1 1 3 1 1 1  

1 1 1 2 ' 

3 1 5 1 1 1 5 1 1  1  2  5  1  

0 2 

1 4 

0 2 

By changing the format statement we can reduce the number of cards in 

the input stream to one fourth. 
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G» Plow Chart of the Main Program 

Figure 2.7 depicts the flow chart of the main program discussed 

in section C. The different biasing techniques and the different 

stopping rules used for analysis are not included. 

In the flow chart, two different types of lines with arrowheads 

are used. One is solid and the other is dotted. The former refers 

to the active path indicating the relationship between one block 

and the next block of the flow chart; whereas . The latter refers to a 

"dummy" path which merely keeps track of the "ordered" sequence of 

the two steps. 
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Figure 2.7. (continued) 



www.manaraa.com

50 

step T 

t 

y 

NPROB = NPROB + 1 

> ' 

Step 8 

FROM STEP 6 

NPROB .EQ. multiple 
of 

ample size? 

\ 

Yes 
1 

Call stopping routine 

Is stopping 

Order the schedule 
times 

GO TO 

STEP 1 

Figure 2.?. (continued) 
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Figure 2.7. (continued) 
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Figure 2.T. (continued) 
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III. STOPPING RULES 

A. Introduction 

As we mentioned in Chapter 1, without regard to the availability 

of algebraic procedures, problem-size constraints, etc., the Monte 

Carlo method allows "tentative" results to be obtained for almost any 

sequencing problem. This method is basically characterized by 

randomly generating sequences and then selecting the best from a large 

n̂umber of such sequences. 

For most of the combinatorial problems, the total number of 

possible combinations is very large. The expression (n!)'̂  is often 

cited for the number of schedules for an n job m machine (n x m) 

problem. To get a feel for the size of (n!)'", it should be suffi

cient to note that (6!)̂  is approximately 1.93 x 10̂ ,̂ which is 

more than the number of microseconds in six years. But the above 

expression provides in general neither a very good estimate nor an 

upper bound. It is presumably based on the special symmetric problem 

in which each job has one and only one operation on each machine (Conway, 

Maxwell and Miller (1967). Even a present generation computer will not be 

economically able to examine more than a fraction of the total number of 

possible combinations for most combinatorial problems. Thus, a sample 

of the combinations must be selected for examination. 

Monte Carlo technique, being a random sampling procedure, has to 

choose sample points from a large sample set in sequencing problems. 

Consequently, it poses potential serious limitations on the utility of 

Monte Carlo methods for solving these problems as to how many samples 
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to draw from the set before a decision can be arrived at and what is 

the statistical measure of efficiency in relation to the "optimum" 

solution. Otherwise, even for a small problem, it is not unlikely 

that by the same algorithm, different scheduler, will be generated 

unless the entire set is sampled. This would require a hû e 

expenditure of resources to generate all possible combinations. 

The need for rules to stop Monte Carlo sampling procedures for 

sequencing problems has been recognized by many. Elraaghraby (1968a) 

sketched a process for halting Monte Carlo sampling for the job-shop 

scheduling problem. His paper relied heavily on prior knowledge of 

the distribution of sequence payoff. The short outline of his approach 

is given below. To arrive at the optimal stopping rule, the scheduler 

raust construct a "loss function" which expresses dependence on 

two variables: the minimum schedule time d̂  actually obtained 

after n trials, and the changes of obtaining, through random 

sampling, a better sequence. Let 

a = cost of experimentation per experiment 

b = measure of utility of a unit of time saved 
in the duration of the sequences and 

0(x)dx = normal probability density function of 
schedule time distribution with the esti
mated mean u and standard deviation a, i.e.. 

(p(x)dx = —~ exp [ 2  ̂
/ 2 ira 2a 
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The expected saving in time from the (n+l)st experiment is given 

by 

* * * 
d ^  *  / ^ d  -  d  

h / (d̂  - x) (j)(x)dx = bd^ 0̂ —̂ —j- h f  ̂ X(|)(x) dx 

where ( $) is the cumulative standard normal probability function. 

Naturally, an experiment will be conducted when the expected 

marginal gain is greater than the marginal cost, i.e., the extra 

sample will be taken if 

* * 
* /d _ d 

b ^̂ 0 J ~ ^ ̂  x*(x) dx > a. 

Otherwise, experimentation halts, and the best sequence thus far 

obtained is implemented. 

Although Elmaghraby's stopping rule is conceptually valid, 

it does not hàve wide applicability as an opGraticnG.1 tool. 

In this regard it is sufficient to mention only two of his own 

remarks. First, the measure of b is difficult because there is no 

"a priori" knowledge of where the saving in time is going to occur. 

Consequently, an average figure over all the machines is to be 

assumed. Second, "the use of the theoretical density function (on 

which the stopping rule is based) is naturally crucially dependent on 

the stability of the 'product mix'' from period to period, as well as 

on the stability of the number of jobs to be sequenced. That is to say, 

a different set of jobs requiring different processing times (i.e., 

sample points are drawn from different populations) would lead to a 
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different density function. On the other hand, if n, the number of 

jobs to be sequenced, is different from period to period, it is not 

immediately obvious how the theoretical density function should be 

modified to cope with such variation" (Elmaghraby, 1968a/. 

In scheduling a problem, the experimenter is interested in the 

extreme values, such as to maximize "pay-offs," to minimize make-span 

time, etc. Assumed distributions may not truly recognize the behavior 

of extreme values. Therefore, placing total emphasis on an assumed 

distribution, particularly where techniques for improving efficiency 

are being applied, can lead to non-optimal stopping rules and ineffi

cient sampling algorithms. 

Randolph, Swinson and Ellingsen (19T3) developed stopping rules 

for sequencing problems in which a minimum of assumptions is made 

about the characteristics of the pay-off distribution. The basic tool 

employed for their analysis is the sequential Bayesian decision 

procedure. The approach is briefly described below. 

Suppose observations x̂  and x̂  are taken sequentially from a 

given multinomial population. Each observation costs a finite amount 

c. After each observation, the experimenter has a choice. He can 

stop and receive a pay-off which is based on the values of the obser

vations , or he can pay a fixed fee and continue with another observa

tion. Let ŷ  = x̂  if sampling is without recall and ŷ  = 

max(x̂ 5 , x̂ ) if sampling is with recall. 

Let P(j) = unknown probability of pay-off, j =1, ..., k. 

In the modified Bayes rule a prior distribution to the set of 
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probabilities is specified and after an observation is made, the prior 

distribution is modified to reflect the information this observation 

has given. After going through the Bayesian analysis, they showed 

that the expected gross improvement in the sequence pay-off for the 

(n+l)st sequence is equal to the stopping rule function 

which is given by 

- ,4 
 ̂̂ n+1 

m + n 

k 
Z 

n+l 

-yj. 

where m. refers to the confidence coefficient corresponding to the 

personal probability P(j). 

Comparing the value of the above stopping rule function with the 

value of c will determine the stopping point; that is, if 

T T (y ) - c, the sampling should be stopped. Since y is a 
n+l n n 

monotonically non-decreasing function of n, n̂+l̂ n̂̂  a de

creasing function of n, which approaches zero as n increases. 

Thus, sampling will always stop eventually. 

The above stopping rule is derived independent of the prior distri

bution of the sequence psy-offs. But apart from the mathematical 

complexity involved in converting the prior to the posterior distri

bution after each sample and the difficulty in calculating true 
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values of the pay-offs and cost, purely subjective confidence coef-

ficents m̂ 's used in the stopping rule function must have a 

biasing effect in the decision. Different experimenters having dif

ferent degrees of confidence will come up with different "optimal" 

sample sizes. For example, suppose two experimenters have exactly 

the same personal probabilities, but they have different degrees of 

confidence m in the personal probabilities. Also, suppose that the 

experimenters have made n observations with the same ŷ  for 

each experiment. Then since  ̂strictly increasing 

function of m (Randolph, 1968), there exist values of c such that 

for a given ŷ  the less confident experimenter will stop, but the 

more confident experimenter will continue sampling. 

Samual H. Brooks (1958) discussed different random methods for 

seeking maxima. There he mentioned how to determine the number of 

trials required in random sampling. Quite analogously, Giffier, 

Thompson and Van Ness (1963) calculated the number of trials needed 

in random generation to come to a decision. They consider Monte Carlo 

process as a binomial trials process in which either an "optimal" 

schedule is obtained or not. Let 

P = probability of favorable event 

1 - P = probability of unfavorable event 

1 - (1 - P)̂  = probability of getting an "optimal" schedule in 
n trials. 

If P can be considered as some specified lowest percent of schedule 

time, then the stopping rule can be identified as determining the 

number of samples corresponding to any confidence coefficient. But 
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as McRoberts (l9Tl) pointed out that in the explosive type combina

torial problems, even a small value of P may require a sample 

size which is computationally uneconomical. 

McRoberts (l9Tl) outlines and provides examples of the applica

tion of the extreme value distribution as mechanisms for estimating 

optimum limits. This will be discussed in more detail in Chapter 6. 

From the distribution of the extreme values obtained from randomly 

generated independent samples, a minimum bound can be estimated. By 

applying procedures outlined, two important variables of interest 

can be studied: first, for a particular sample the deviation from the 

estimated minimum can be found, and second, the corresponding proba

bility of improvement can be measured. The useful decision model 

described on the basis of the estimated minimum is as follows: 

L 
if ; (L - Z) dF(z) < OJC , 

Z min " 

then accept the best criterion measure so far obtained and stop. 

Otherwise, continue the search where = cost per trial, = 

opportunity cost of improving the criterion measure and L = estimated 

value of the lower bound Z. • 

The distribution of the extreme values has the advantage of 

being independent of the parent distribution and the parameters, as 

we shall see, can be easily obtained and interpreted. If the experi

menter is interested in a schedule time within some specified 

percentage of the estimated lowest value, this can be used as a 

stopping rule for Monte Carlo sampling. 



www.manaraa.com

60 

B. Distribution-free Stopping Rules 

In this section, we explain the different stopping rules that 

we will use in the dissertation to halt the Monte Carlo sampling. 

All of these are independent of the parent distribution of the schedule 

time and can be easily incorporated into the scheduling algorithm. 

The algorithm will terminate the sampling procedure when the stopping 

rule function converges to a specified value. The fact that the 

schedule time distribution is truncated at both ends will be useful 

in the discussion of stopping rules. 

1. Stopping rule 1 

Let ith sample be drawn from the set of the feasible schedules 

and the maximum (MAX̂ ) and the minimum (MIN̂ ) schedule times 

are determined. As shown in figure 3.1, A and B refer to the two 

extreme points of the distribution. 

Arbitrary distribution 

B A MIN. MAX 

Figure 3.1. Variables in stopping rule 1 
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Let Z. = MAX. - MIN. 
I l l  

Next, the (i+l)st sample is drawn and as before (MAX̂ _̂ )̂ and 

are determined. 

Take 

MAX. .. = max (MAX. , MAX. ) 
1+1 1+1 1 

and 

MIN..T = min (MIN. , MIN.) 
1+1 1+1 1 

As before, £, , = MAX.- MIN.̂ . 
1+1 1+1 1+1 

Now define the stopping rule function (&) by 

' *i+l " ̂'i 

If £ < (a specified value), then sampling is stopped. Otherwise, 

we make & and continue sampling. Since A and B are 

two fixed points, stopping rule function (z) will converge 

eventually. 

2. Stopping rule 2 

Corresponding to the ith sample, let us determine three 

variables, MAX̂ , MIN̂  and mean schedule time (X_). Then the (i+l)st 

sample is drawn and the corresponding three variables are determined. 

In figure 3.2, let A and B again refer to the extreme points 

of the distribution. After each sample, the mean is always calcu

lated on the entire number of schedules drawn so far. For example, 

let the sample size be n and the total number of schedules drawn at 
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the end of the ith sample be N.. In this case X. and X. , 
1 1 1+1 

are calculated as follows : 

I T, 
K=1  ̂

X̂  = —̂  , where is the time for Kth 

 ̂ schedule 

î+n 
I 

, Y - K=1 

 ̂ i+1 ~ N̂ +n 

Itrary distribution 

MAX MAX 1*1 1+1 i+1 

+ 

1+1 1+1 

Figure 3.2. Variables in stopping rule 2 

Let us now take 

MAX̂ ^̂  = max (MAX̂ ^̂ ,̂ MAX̂ ) 

MIN̂ +i = min MIN̂ ) 

CC = X̂  _ MIN̂  
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Di+l = %i+l -

DT = MAX. - X. 
1 11 

= >̂ 1.1 -

Let us now define the stopping rule functions (D ) and (D*) 

as follows: 

and 

D = iDj -

= l»I -

If D < Eg (a specified value) 

and 

1 Gg, 

sampling is stopped. Otherwise, we continue sampling. Since 

X̂ 's are approximately normally distributed, the value of X̂  will 

be stabilized as more and more samples are drawn. As A and B 

are fixed, MAX̂  and MIN̂  will also be stabilized with more 

samples. Therefore, stopping rule functions will converge eventually. 

3. Stopping rule 3 

This rule is the same as stopping rule 2 except that it does not 

take into account the maximum value of the schedule in the sample . 

Only the mean value and the left tail of the distribution are the 

considered. This rule can be estimated from rule 2 as follows: 
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If D~ £ Eg (a specified value), sampling is stopped. Other

wise, we continue sampling. 

h. Stopping rule h 

Assume the ith and (i+l)st samples are drawn and as before 

MIN̂  and are determined. In this case, the stopping rule 

function will be defined by 

M = MIN. - MIN̂ t 
1 1+1 

If M = 0, sampling is stopped; otherwise, set 

MIN̂  = min (MIN̂ , 

and continue sampling. Since the lowest value of the distribution 

is fixed, function M is converging. 

5. Stopping rule 5 

Let P(i,j) be the processing time of job i on machine j. 

Then the lower limit of the schedule time is defined by 

LL = max {Z P(i,j), Z P(i,j)} for all i,j. 
i j 

This lower limit is not usually obtainable. In Chapter 6, we shall 

estimate the minimum schedule time. Let the estimated minimum be e. 

Let Ba be any desired lower limit so that it is within some 

specified percentage of LL or e. Referring to the stopping rule 4, 

we determine both maximum and minimum values. We define the function 
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M and N by 

M = MIN. - MIN 
1 1+1 

and 

N = MAX_, - MAX. • 
1+1 1 

Now the stopping rule is defined as follows: 

If MIN. < Bd 
1 — 

or 

M = N = 0, 

sampling is stopped. Otherwise, we make 

MIN̂  = min (MIN̂ , MIN̂ +̂ ) 

and 

MAXj, = max (MAX̂ , MAX̂ _̂ )̂ 

and continue sampling. 

6. Stopping rule 6 

As explained in stopping rule 5, the lower limit LL is not 

normally obtainable. In a system having facilities with non-identical 

multiple machines, it will be even more difficult to obtain the lower 

limit. Therefore, the scheduler may not be interested in specifying the 

stopping criterion on the basis of this lower limit. In this case, if 

estimated minimum e is not available, the stopping rule 5 completely 

ignores Bd and sampling depends only on the converging rate of M 

and N. 
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IV. SINGLE MACHINE ANALYSIS 

A. Introduction 

This chapter will deal with a special case of the multiple machine 

algorithm which was presented in Chapter 2. Instead of multiple 

machines in each work center, a single machine will be considered here. 

As indicated in Chapter 2, the algorithm can generate two sets of 

feasible solutions, one by Monte Carlo sampling and the other by incor

porating in it the principle of left shifting. The difference between 

these two feasible sets of solutions will be examined in detail with 

respect to the different factors such as minimum schedule time, sample 

size needed, CPU time, and distribution of the schedule time, etc. 

The effects of biasing techniques on the above solutions will also 

be explored. 

The different distribution-free stopping rules discussed in Chapter 

3 will be studied with respect to the above factors. A decision rule 

will be suggested regarding the use of those stopping rules. 

Before we enter into the different phases of analysis, let us make 

some short remarks on the different parameters and variables that will 

frequently be used in our discussion. 

The most important measure of the worth of the Monte Carlo process 

in our discussion will be the length of the shortest schedule observed. 

In order to make a comparative analysis between the two sets of 

feasible solutions obtained by the Monte Carlo process, a worthwhile 

parameter to consider is the most probable schedule observed. . 

This provides some indication as to how close the shortest schedule 
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observed is to the schedule having the highest probability. 

In conjunction with the shortest and the most probable schedules, 

another important parameter of interest will be the range which is 

defined as the difference between the longest and the shortest schedules 

observed. Figure l̂ .l shows the above parameters. 

A B C 
Length of the schedule 

Figure 4.1. Different Parameters 

In Figure 4.1, A = shortest schedule 

B = most probable schedule 

C = longest shcedule 

Usually a scheduler is interested in obtaining a "good" solution 

at the cost of a reasonable amount of resources. Therefore, in Monte 

Carlo sampling, the number of schedules needed to arrive at a "good" 

solution and the corresponding computer time should also be considered 

as measures of the quality of the solution. 

The following short notations will be used in our subsequent dis

cussions: COMB: combination technique 

MIN: time of the shortest schedule 

MAX: time of the longest schedule 

MPS: time of the most probable schedule 



www.manaraa.com

68 

R: range of the distribution 

N: number of schedules 

T: CPU time per schedule (in seconds) 

NS: non-left-shifting 

LS: left-shifting 

BT: biasing technique (minimax technique) 

LL; lower limit of the schedule time (discussed 
in section B, Chapter 3> to explain stopping 
rule 5) 

UL: upper limit of the schedule time. This is equal 
to the sum of all processing times 

SR: stopping rule 

B. Left-Shifting and Non-Left-Shifting 

In order to make the shop situation more general and realistic, 

the algorithm also considered the passing and backtracking of jobs on 

some of the machines. This is why the total number of operations is not 

necessarily the product of the numbers of jobs and machines as shown in 

the sample problems of Table U.l. 

Processing times are uniformly distributed over the interval [1,9] 

for the first four problems in Table U.l, and for the remaining 

problems the interval was changed to [10,99]• The technological order

ing was chosen with the help of a random table. Solution parameters 

and variables for the sample problems have been entered in Tables U.2 

through 4.8. 

Tables k.2 through k.8 indicate the improvement in the solution by 

left-shifting. In all the sample problems, the span of the minimum 

schedule obtained by this technique is considerably lower than that by 
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Table 4.1. Sample problems 

Sample Problem Total Number 
of Operations 

5 x 4  l 6  

9 X. k kl 

9 x 6  6 0  

15 X 4 68 

6 x 7  4 6  

6 X 10 6o 

6 X 15 99 
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Table U.2. Sample problem 5 x U (LL = 27; UL = 79) 

Stopping Rules ÎN _MM_ «PS N_ T 
NS LS NS LS NS LS NS LS NS LS US LS 

4̂ +̂  - < 1 32 30 6l U5 29 15 U5 36 150 100 .026 .0334 

- D̂ I- .5 32 30 6l 1*5 29 15 45 36 150 150 .027 .0361 

and 

- <1 - -5 

- D~L- .5 32 30 6l 45 29 15 45 36 100 150 .027 .0334 

MIN̂  - =0 32 30 6l 45 29 15 45 36 150 100 .027 .0334 

MIN ̂  - Bd = LL 

or 

MIN̂  - =0 32 30 6l 45 29 15 45 36 150 100 .027 .0348 

and 

MAX. , - MAX. = 0 
1+1 1 
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Table k . 3 -  Sample problem 9 x b (LL = $6; UL = 2 k 6 )  

Stopping Rules MIN MAX R MPS N 

NS LS NS LS NS LS NS LS NS LS NS LS 

< 1 68 62 122 99 5h 37 110 71 80 80 .lU3 .143 

and 66 58 12U io7 58 U9 107 77 120 120 .161 .170 

- <1 - -5 

|D~^^ - D~| - .5 66 58 124 107 58 U9 107 77 120 120 .ihh .1U6 

MIN - MIN. = 0 68 62 122 99 5k 37 110 71 80 80 .133 .136 
i 1+1 

MIN̂  - Bd = 1.2 LL 

or 

MIN. - MIN. , = 0 66 62 124 99 54 37 107 71 120 40 .143 .145 
1 l+X 

and 

MAX._ - MAX. = 0 
1+1 1 
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Table h . k .  Sample problem 9x6 (LL == 101; UL = 317) 

Stopping Rules 
MIN MAX R MPS N T 

NS LS NS LS NS LS NS LS NS LS NS LS 

< 5 137 123 222 175 85 52 l8l lUl 60 60 .29 .32 

1"! - Vil - -5 

and 126 llU 2̂ 5 183 119 69 190 135 150 150 .31 .36 

|DT - DT̂ Î - .5 132 116 233 183 101 65 197 135 120 120 .29 .33 

MIN^ - = 0 132 116 233 I83 101 65 197 135 120 120 .29 .32 

MIŴ  - Bd = LL 

or 

MIN^ - = 0 132 llh 233 I83 101 65 197 135 120 150 .33 .35 

and 

MAX. _ - MAX. = 0 
1+1 1 
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Table 4.5. Sample problem 15 x 4. (LL = 126; UL = 351) 

 ̂ MIN MAX R MPS N T 
opping Rules LS NS LS NS LS NS LS NS LS NS LS 

&. - < 1 130 127 230 158 100 31 179 lln 1&0 Uo .U9 .52 
169 133 

131 

1 1+1 

1 — — I  ̂
ID. - D.̂ J - .5 

and 130 127 241 I70 111 43 179 133 60 60 .52 .55 

- "r.ii - -5 

|D̂  - D~̂ ]̂ - .5 130 127 241 170 111 1+3 179 138 60 60 .52 .55 

MIN. - mu. _ = 0 130 127 230 158 100 31 179 lUi 40 40 .49 .52 
 ̂ 169 133 

131 

MIN̂  - Bd = 1.01 LL 

or 

MIN̂  - MIN̂ +i = 0 130 127 230 158 100 31 179 133 40 20 .51 .55 

and 

MAX._ - MAX. = 0 
1+1 i 
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Table 4.6. Sample problem 6x7 (LL = 379; UL = 2123) 

MIN MAX R MPS N T 

Stopping Rules LS NS IS NS LS NS LS WS LS NS LS 

< 10 561 U97 1072 739 511 2U2 779 515 100 100 .22 .25 1 i+± 

|b; - D-,J i .5 

and 537 491 1103 739 556 248 763 515 150 200 .22 .25 

|D:-D;^j:.5 

| d 7 - D 7 . ,  I  -  .5 561 4 9 7  1072 739 511 242 779 685 150 150 .22. .25 
1 x+x 515 

MIN. - MIN.  ̂=0 561 497 1072 739 511 242 779 685 100 150 .22 .25 
1 1+1 515 

MIN - Bd = LL 
i 

or 

MIN̂  - = 0 561 497 1072 739 511 243 779 685 100 15O .22 .25 

MAX_, - MAX. = 0 
1+1 1 
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Table U.7. Sample problem 6 x 10 (LL = 507; UL = 3l62) 

Stopping Rules 
MIN MjUC R MPS N T 

NS LS NS LS NS LS NS LS NS LS NS LS 

i+1 i ' 
719 
71U 

and 
769 
719 

- MAX. = 0 

105_ 

 ̂ 35 873 683 1502 1022 629 339 1272 729 100 100 .h2 .hj 

<20 663 150 

IVl - - -5 
and 81*5 656 1502 1022 707 367 12U2 719 200 250 .51 .52 

ID" - DTI - .5 873 663 1502 1022 629 359 1272 769 150 150 .1+5 .48 

MIN. - =0 873 663 1502 1022 629 359 1272 791 150 200 .h2 .hj 
769 
ZI9 

< 714 
MIN̂  - Bd = LL 705 

or 

MIN̂  - = 0 873 663 1502 1022 629 359 272 791 15O 200 -50 .51 
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Table b.8. Sample problem 6 x 15 (LL = 750; UL = 4738) 

Stopping Rules MIN MA:{ R MPS N 

i+1 i 98U 

981+ 

MIN̂  - Bd = LL 

or 

NS LS NS LS NS LS NS LS NS LS NS LS 

î+1 - < 30 1152 847 1859 1232 707 385 1412 949 100 100 .89 .97 

< 5 847 150 

l̂ i+l " 
and 1095 843 1859 1236 764 393 l4o4 917 200 200 .93 1. 

ivi -5 

|D7 - - D7| - .5 1131 847 1859 1236 728 389 1434 1008 150 150 .94 .99 

MIN̂  - = 0 1131 847 1859 1236 728 389 1434 1008 150 150 .89 .97 

MIN̂  - = 0 1131 843 1859 1236 728 393 l434 917 150 250 .94 .99 

and 

MAX._,̂  - MAX. = 0 
1+1 1 
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non-shifting. The range of the distribution of the schedule time is 

always much smaller in left-shifting. 

From figures h.2 through 4.10, we find that in some cases, the 

most probable schedule (MPS) provides a rough indication about the 

nature of the distribution. But, in most of the cases, it does not 

provide any good indication. In this respect, the number of "peaks" in 

the distribution might be an important parameter of interest to us. A 

peak is defined to be a point at which the observed frequency stops 

increasing and starts decreasing. If the number of peaks is large, it 

becomes difficult to approximate the nature of the distribution by a 

single parameter like IffS. Schedules obtained by an improved technique 

such as LS will have relatively fewer number of peaks in the distribu

tion, though no generalization to this claim can be made. However, in 

Monte Carlo sampling related to our scheduling problems, instead of 

specifying the most probable schedule (MPS) only, knowledge of the 

schedules (mostly more than one) having relatively higher frequency 

with their corresponding probabilities will perhaps be more helpful to 

predict the approximate nature of the schedule time distribution. 

C. Biasing Techniques 

In any random sampling, the use of a biasing technique is usually 

intended to have an improved subset of the set of all feasible solu

tions. It is desired that this subset will contain the desired solu

tion with relatively high probability. 

BTl: This biasing technique refers to the sampling procedure which, 

instead of selecting the process at random, selects the one having 
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minimum starting time. Referring to the algorithm developed in section 

B, let P be the set of all scheduleable operations. Corresponding to 

each operation in P, find maxi = max (maximum machine time and maximum 

job time), i =1, 2, ..., P. Now find a subset Q = rain (maxl, max2, . 

..., maxP). Select one of the operations in Q at random. 

Due to a shortage of computer funds, this technique was not 

actually tested. But in view of BT3 discussed in Chapter 5 •. we can 

conclude that BTl should be always better than non-shifting sampling 

and perhaps superior to left-shifting in respect to the range of the 

distribution. However, this technique will take much longer CPU 

time than left-shifting. 

BT2; In this technique, after selecting a process by BTl, the 

left-shifting criterion is incorporated. BT2 can be expressed as 

BT2 = BTl + LS. BT2 must be at least as good as BTl in any feasible 

solution because it is a better subset of BTl. 

Six problci.'i;; were tested and different parcmeters h.ive b̂ ^̂  

entered in Table U.9. In all the problems, BT2 has been found to be 

better than LS with respect to minimum schedule time. 

In all the problems, the biasing technique BT2 has the shorter 

ran̂ e. It shows that if a single feasible schedule is to be drawn, 

this technique will provide a better schedule with a higher probability. 

But if we look at the CPU time, left-shifting is always better. 

In most of the cases, the CPU time per schedule in the biasing 

technique is more than twice as much as that in left-shifting. This is 

perhaps due to the fact that in the biasing technique, for each operation. 



www.manaraa.com

Table U.9. Comparison between NS, LS and. BT2 (Numbers in the table correspond to stopping rule U) 

Sample MIH R N T 
Problems NS LS BT2 LS BT2 LS BT2 ~LS BT2 

9 X  ̂ 68 62 58 37 23 8o 80 O.lU 0.31 

9 x 6  1 5 2  ll6 112 65 h2 120 120 0.32 0.62 

15 X 4 130 127 126 31 27 kO 40 0.52 l.l4 

6 x 7 561 U97 UU7 242 186 150 100 0.25 0.58 

6 X 10 873 663 636 359 29h 200 100 O.U7 1.19 

6 X 15 1131 847 827 389 321 150 100 0.97 1.61 
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we are to apply max-min principle over the whole set of scheduleable 

operations to check for the minimum starting time. 

Depending on the size and the structure of the problem, left-

shifting may sometimes be found superior to BT2 with respect to 

minimum schedule time. In fact as we shall see in Chapter 5, in a 

small problem, left-shifting provided a better minimum than BT2. The 

better results demonstrated by BT2 in most of the cases should 

probably be apprehended because schedules are drawn from a better set 

(BTl) than that in left-shifting. 

If the CPU time is very critical, left-shifting is always to be 

applied at the expense of probable better results. If the scheduler 

is more concerned with the better schedule at the expense of higher 

CPU time, BT2 is a superior choice. 

Perhaps the best choice will be to apply a third alternative which 

combines both techniques LS and BT2. For each operation, the program 

will randomly select either LS or BT2 and process the operation by 

that technique. To make a compromise between CPU time and the better 

schedule, we suggest this combination technique. It is expected that 

in all cases this will be better than the worse of the two and close 

to the better one. With respect to CPU time, this will be better than 

BT2 and worse than LS. According to the Judgement of the scheduler, 

if he prefers a particular technique, he can assign more weight to it 

and apply the combination technique. 

In fact, our program has been designed to incorporate all three 

techniques. With the following simple changes on the first data card of 
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the input stream, any of the three techniques can be applied to a 

problem. 

Column 19 Column 20 

BT: - 1 

LS: 1 

Combination : 0 

Figure H.ll shows the relative advantage of BT2 over LS. 

Figure 4.12 depicts how the combination technique relates with LS 

and BT2 for the problem 15 x 4. The table b.lO shows the improvement 

of CPU time by combination technique in problem 6 x 10. 

Table U.IO. Combination technique in 6 x 10 problem 

LS BT Combination 

Minimum schedule time 663 636 639 

CPU time/schedule O.UT 1.19 0.8 

D. Sample Size and Stopping Rules 

Referring to Tables k.2 through k.8, we see that different stopping 

rules need different numbers of schedules to meet their criterion. 

Usually stopping rule 1 requires fewer numbers of schedules, especially 

when a higher is specified while stopping rule 2 is 

relatively slow and the sampling procedure is terminated after drawing 

more schedules. However, the latter produces the best results. 
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If we are interested in a better minimum at the expense of more 

CPU time, rule 2 should be used. 

When CPU time is a critical factor, the scheduler can assign 

some "reasonable" lower bound for the schedule time and apply stopping 

rule 5. The lower bound may be assigned on the basis of the lower 

limit (LL) or any estimated minimum. There is a higher probability 

chat this will give the desired solution within a reasonable amount of 

time. 

For the usual situation, stopping rules 1, 3 and !+ can be applied. 

Of these three, stopping rule 4 is preferred in view of the CPU time 

and the better result obtained. 

As regards to the sample size, let us observe the relative improve

ment of the minimum schedule with the increase in the number of sched

ules (Table 4.11). The numbers in the table are the minimum schedules 

(MIN) with respect to left-shifting. 

From Table 4.11, observe that in most of the cases, 500 schedules 

gave a better minimum than that obtained from 100 or 150 schedules. 

However, the improvement may not always justify its worth when CPU 

time is taken into consideration. All the stopping rules usually need 

two or more samples to be drawn before the criterion is met. Stopping 

rule 2 needs more samples as we observed. Stopping rule 5 is sometimes 

faster if a reasonable desired limit is specified. With this informa

tion, we suggest the following rough guide rules for the sample size to 

be specified in the program (Table 4.12). 
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Table 4.11. Relative improvement of MIN with number of schedules 

Problems 
50 

Number 

100 

of Schedules 

150 

Drawn 

200 500 

9 x 4  62 60 58 - 58 

9 x 6  123 116 ll4 112 112 

15 X 4 127 126 - - 126 

6 x 7  503 497 497 491 486 

6 X 10 696 683 663 663 652 

6 X 15 876 847 847 843 837 

Table 4.12. Stopping rules and sample size (single machine) 

Stopping Rules Approximate Sample Size 

1 (with higher - &̂ ) 1»0 - 60 

1 (with lower - &̂ ) 30 - ko 

2 25-35 

3 35-45 

4 35-45 

5 (with no "bound") 30 - 4o 

5 (with "bound") 40-50 



www.manaraa.com

95 

E. CPU Time 

Between different stopping rules, CPU time/schedule does not differ 

significantly. This difference is not always consistent. 

As we noticed previously regarding CPU time per schedule, there 

is not much difference between NS and LS, but there is a signifi

cant difference between LS and BT. CPU time per schedule is de

pendent on the number of operations in the problem. It seems that the 

algorithm is equally critical on the number of jobs and the number of 

machines. However, no generalization can be made unless more sample 

problems are tested. Figures I+.I3 and U.l̂ t show the growth in computing 

time with the problem size. 
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V. ilULTIPLE MACHINE ANALYSIS 

A. Introduction 

This chapter will deal with the systems where multiple machines 

can exist in different work centers. This will be the exact repre

sentation of the algorithm developed in Chapter 2. 

As in Chapter 4, differences between the solutions obtained by 

left-shifting and non-left-shifting will be studied here with respect 

to minimum schedule time, sample size needed, CPU time, distribution 

of schedule time, etc. 

A short discussion on single machine versus multiple machines 

will also be presented. 

In addition to the different biasing techniques used in Chapter It, 

we will examine the effect of other biasing techniques and explore 

the possibility of some others. 

The stopping rules will be discussed in the context of multiple-

machines facilities. 

The short notation used in Chapter k will also be valid in this 

chapter. 

With respect to the multiple-machines facilities, it is worth

while to note the followng two observations regarding the number of 

machines and operations. Unlike the single machine facilities, the 

number of machines and facilities are not the same in "strict" 

multiple machine facilities. In the latter case, a problem 

of size 6x7 should not be understood as referring to a system 

having 6 jobs and 7 machines; it should refer to a system 
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having 6 jobs and 7 facilities with more than 7 machines. In 

our discussion, we will specify a multiple-machines facilities system 

by n X f X m, where n, f, and m refer, respectively, to the 

number of jobs, facilities and machines. 

Regarding the number of operations in multiple-machines facilities, 

as mentioned in Chapter 2, some operations will be made "inactive" as 

we proceed with the algorithm and will never be processed. Therefore, 

in this case, the total number of possible operations in a problem 

will be more than the number of "active" operations that are actually 

processed during the different iterations. 

In a later discussion in this chapter on single machine versus 

multiple machines, we shall see that in a multiple-machines facility, 

the difference between the minimum obtainable schedule and the lower 

limit (LL) depends on the number of machines within each facility. 

For this reason in our subsequent discussion on left-shifting and non-

left-shifting, we will not use lower limit (LL) to determine a 

bound (Bd) to be used in stopping rule function. Thus, stopping 

rule 6 will be used instead of stopping rule 5 which can be applied 

in the context of an estimated minimum to be discussed in Chapter 6. 

B. Left-Shifting and Non-Left-Shifting 

The sample problems in Table 5.1 have been considered to study 

the different parameters of interest. These problems were also examined 

in Chapter 4 for single-machine facilities. So the technological 

ordering remains the same as before for each problem. The solution 

parameters and variables for the sample problems have been entered in 

Tables 5-2 through 5.7« The lower limit (LL) that has been mentioned 
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Table ^.1. Sample problems 

Sample Problem Total Number of Number of 
Jobs X Facilities x Machines Operations Active Operations 

5 X 4 X 10 39 l6 

9 x 4 X 10 lOlt 4l 

15 X 4 X 10 168 68 

6 X 7 X 14 lOU 46 

6 X 10 X 19 ll4 60 

6 X 15 X 26 151 99 

in each sample problem has been defined as max (E P(i,j)) for all 

i, where P(i,j) is the processing time of the job i on the most 

efficient machine of the facility j. Tables 5.2 through 5.T indicate 

the improvement in the solution by left-shifting in multiple-machines 

facilities. As in Chapter this technique is superior to non-

shifting procedure with respect to minimum schedule time, range of 

the schedule time distribution, etc. 

From figures 5.1 through 5.3, we observe that the multiple-

machines facilities also a single parameter MPS (most probable 

schedule) does not provide a very good indication about the nature 

of the distribution. In this respect, we refer to our discussion in 

Chapter U. 
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Table 5.2. Sample problem 5 x 4 x 10 (LL = 2U) 

Stopping Rules —HL. _MAX_ S_ _JES_  ̂ T 
NS LS NS LS NS LS NS LS NS ? LS NS LS 

- £̂ ) < 1 35 28 73 50 38 32 37 80 80 .105 .107 

ID- - - -5 

and 33 28 75 50 k2 32 38 120 120 .105 .108 

- "I.ll - -5 

|DT - D~̂ |̂ - .5 33 28 75 50 h2 32 38 120 120 .105 .107 

(MIN̂  - = 0 35 28 73 50 38 32 37 80 8O .105 .107 

IMIN̂  - = 0 

and 35 28 73 50 38 32 37 80 80 .105 .108 

(MAX̂ ^̂  - MAX̂ ) = 0 
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TaSle 5•3. Sample problem 9 x U x 10 (LL = 36) 

Stopping Eules 

1^1 - C|: -5 

MIN MAX R MPS N T 

NS LS NS LS NS LS NS LS NS LS NS LS 

*̂'1+1 - *i) < 1 55 It It 103 82 48 38 1" 62 100 100 .59 -52 

- »;+ii - -5 

and 

'mi 

51 UU 112 83 6l 39 76 6h 150 150 .50 .5̂  

|d̂  - - .5 55 hh 103 82 US 38 77 62 100 100 .U9 .52 

.(MIN̂  - = 0 55 103 82 48 38 77 62 100 100 .U9 .52 

(MIK - = 0 

and 55 44 103 82 48 38 77 62 100 100 .50 .53 

(MAX̂ ^̂  - MAX̂ ) = 0 
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Table 5.b. Sample problem 15 x U x 10 (LL = 38) 

Stopping Rules 

ID: - .5 

IBÎ - r- 5 

MIN MAX R MPS M T 

NS LS NS LS NS LS NS LS NS LS NS LS 

(Jlî i - < 1 93 76 l8l 138 88 62 113 93 100 80 1.15 l.h 

and 93 76 185 IU3 92 67 131 9U 150 100 I.16 1.46 

i - «i.il 

|d̂  - .5 93 76 181 138 88 62 113 93 100 80 l.lU 1.U3 

(MIN̂  - = 0 93 76 181 138 88 62 113 93 100 80 l.lU l.U 

(MIN̂  - MIN̂ ^̂ ) = 0 

and 93 76 I8I 143 88 62 Il3 94 100 l2o 1.15 1.43 

(MAX̂ ^̂  - MAX̂ ) 
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Table 5.5. Sample problem 6 x T x l4 (LL = 379) 

Stopping Rules 
MIN MAX R MPS N T 

NS LS -.»S LS NS LS NS LS NS LS NS LS 

- £.) < 1 U97 U21 1133 692 636 28l 791 Î+67 80 80 .50 .5̂ : 
 ̂ 498 

Id- - •>-,,! : .5 

and I493 U15 1167 735 67I+ 320 763 U98 120 120 .52 .56 

Ib; - : .5 

1DT - DT.TI - .5 U97 421 1133 692 674 284 791 467 80 80 .50 .54 
^ 498 

(MIN. - MIN. .) = 0 497 421 1133 692 674 281 791 467 80 80 .50 .54 
498 

(MIN̂  - MIN̂ _|_̂ ) = 0 

and 497 421 1133 692 674 281 791 467 80 80 .51 .55 

(MAXi_̂ l - MAX̂ ) = 0 498 
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Table 5.6. Sample problem 6 x 10 x 19 (LL = 507) 

Stopping Rules 
MIM NIAX R MPS R T 

NS LS NS LS NS LS NS LS NS LS NS LS 

^̂ 1+1 - < - 69̂  569 lk27 102U 733 5̂5 1121 698 80 60 ,91 .97 
7̂ 8 
819 
927 

and 679 556 1521 1107 8U2 551 1137 7U8 100 80 .92 .915 

- =i.ii - -5 

|D̂  - - .5 679 556 1521 1107 8L2 551 1137 748 100 80 .91k .973 

, -MIW..t)=0 69U 569 IU27 102k 733 U55 1121 698 80 60 .91 -97 
i+j. Y 1̂ 8 

819 
927 

(MIN̂  - = 0 

and 69k 556 1427 1107 733 551 1121 7̂ 8 80 80 .9lk .973 

- MAX̂ ) = 0 
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Table 5.7. Sample problem 6 x 15 x 26 (LL = 750) 

Stopping Rules 

- VJ - -5 

l< - - -5 
< 

MIN MAX R _ MPS N R 

NS LS NS LS NS LS NS LS NS LS NS LS 

- 2.) < 1 865 791 1322 1017 5̂7 226 1127 821 60 6o 1.6l 1.72 
 ̂  ̂ 1231 834 

1301 

and 8U9 789 lkl2 1049 563 760 1127 813 100 100 1.63 1.75 
130k 834 

|D. - D I - .5 849 789 1377 1033 528 244 1127 821 80 8o 1.62 1.73 
 ̂  ̂ 834 

(MIN. - ÎCN ) = 0 865 791 1322 1017 457 226 1127 821 60 6o 1.6l 1.72 
 ̂  ̂ 1232 834 

1301 

(MIN̂  - MIN̂ _̂ )̂ = 0 

and 849 789 l4l2 1049 563 26O 1127 823 100 100 1.62 1.73 
1304 834 

(MAX̂ ^̂  - MAX.) = 0 
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C. Biasing Techniques 

Biasing techniques (BTl and BT2) and their combinations with 

left-shifting and non-left-shifting have been discussed in Chapter 

Due to shortage of computer money, all these techniques could not be 

examined with multiple-machines facilities. A (3 x 3x7) problem 

was tested by BT2, LS and their combination. Distributions of 

the schedule times have been shown in figure 5.̂ . We observe that 

with respect to minimum schedule time, left-shifting is superior to 

BT2, but the latter has a smaller range. However, no firm conclusion 

can be drawn from the solution of a single problem. In fact. 

from experience with BT4 to be discussed shortly, BT2 should be, 

in most of the cases, superior to left-shifting because schedules 

are drawn from a better subset. 

Let us now try to explore some other techniques which are unique 

to multiple-machines facilities. 

1. BT3 

This technique refers to the sampling procedure which includes 

two stages. At the first stage, a scheduleable operation is selected 

at random from a facility. Final selection is made at the second 

stage on the basis of the minimum starting times corresponding to the 

machines of that facility. Referring to the algorithm developed in 

Chapter 2, let the randomly selected operation refer to job j and 

facility f which has m machines of the same type (they may have 

different efficiencies). Corresponding to the operation and its 

counterparts, find 



www.manaraa.com

-I 
11.00 

-l 
m.00 

-1 
17.00 

O LS 

BT2 

+ COMB 

-1 
20.00 

"T 
23.00 8.00 

Figure 5.4. Comparison among LS, BT2 and COMB t3 x 3 x 7) 



www.manaraa.com

112 

max! = max (maximum machine time for machine i and maximum 
Job time for j) i = 1, 2, m 

Now find a subset Q = min (maxl, max2, maxm); select one of 

the operations in Q at random. In BTl, instead of sampling at ran

dom, we applied the max-min criterion over the facilities in which 

scheduleable operations are found. But in BT3, a scheduleable 

operation was randomly selected, but the final selection for actual 

processing was made after applying the max-min criterion over the 

machines of a single facility. We tested only one problem by this 

technique. Figures 5̂ 5 and $.6 show the relative merits of .ITS, LS, and 

BT3. A combination of BT3 with NS and LS can also be examined. 

Both in BTl and BT3, instead of selecting the operation based 

on the minimum starting time, biasing can be applied on the minimum 

completion time. In applying the max-min principle, we have to 

consider the processing time of the operation in the respective machine. 

As for example, for BT3 

maxi = max (maximum machine time for machine i and maximum 
job time for j) + i = 1, 2, ..., m 

where is the processing time of the operation in machine i. 

2. B^ 

In this technique, after selecting a process by BT3, the left-

shifting criterion is incorporated. BT4 can be expressed as 

BTlt = BT3 + LS. BT4 must be at least as good as BT3 in any feasible 

solution because it is a better subset of BT3. 
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Five problems were tested and different parameters have been 

entered in Table 5.8 where all the figures refer to stopping rule U. 

In all the problems, we observe that BTU is superior to LS except 

computer time/schedule. As the range of the distribution is smaller 

in BTU, we can expect that specifying a smaller sample size, we 

can reduce the CPU time without affecting the solution considerably. 

Perhaps this will lower the total CPU time in BTlt almost equal to 

that in left-shifting. Another alternative will be the combination of 

BTl| and LS. We did not actually try this combination. Figures 5.7, 5.8 

and 5.0 show the comparison between LS and BTU in their distribu

tions for two sample problems. 

3. BT2 and BTU 

We notice that both BT2 and BT4 incorporate left-shifting 

principle in their procedures. In each case, schedules are drawn from 

a better subset of the set from which schedules are drawn in left-

shifting. BT2 applies the max-min principle over the set of all 

scheduleable Jobs to determine which job has the minimum starting 

time. This technique is analogous to first come—first serve tech

nique in dynamic scheduling. First come—first serve rules have 

been found to be superior to many dispatching rules. BT2 tries to 

reduce the waiting time for each job. 

On the other hand, BTU, which is unique for multiple-machines 

facilities, applies the max-min principle over the different machines 

of the same facility with respect to a single job. For multiple-

machines facilities, the scheduler might be only interested to see 
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Table 5.8. Sample problems showing difference between LS and KPU 

Total MIN MAX R MPS BTU 
Sample Problem 

Operations LS BTU LS BTU LS BTU LS BT4 LS BUk 

5xUxlO (Identical) 39 25 25 43 25 18 10 32 26 .107 . 197 
(Active operations: l6) 

9x4x10 lOU 51 1*3 87 75 36 32 66 52 0.52 .99 
(Active operations :Ul) 
(Different from 
9x4x10 used in 5.2) 

15x4x10 168 76 76 138 108 62 32 93 89 1.4o 2.95 
(Active operations: 68) 

15x4x10 (Identical l68 69 68 109 95 40 27 84 74 1.4 2.95 
(Active operations: 68) 

6x10x19 ll4 569 541 1024 8o4 455 263 698 627 0.97 1.92 
(Active operations; 60) 748 

819 
927 
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that if a job is waiting to be served in a facility, which of 

the machines of the facility can start the job earliest. This is what 

is accomplished by BT4. 

We did not actually compare BT2 and BT4 with any sample 

problem. With respect to computer time, BTk should have an ad

vantage over BT2 because BT2 applies the max-min principle 

over the whole set of scheduleable operations while BTU applies this 

principle over a single facility. A combination of BT2 and BTU 

might also be an interesting technique to look at. 

U. Multiple left-shifting (MLS) 

Referring to the left-shifting principle or BT4, suppose a 

particular operation is randomly selected. Instead of processing 

the operation by left-shifting technique or applying the max-min 

principle of BTU, we apply the left-shifting principle over this 

operation and its counterparts and then choose the operation which 

can start earliest. In this technique, the computer logic will be 

more complex, but it will ensure solutions to be at least as 

good as that either by left-shifting or by BT̂ t because solutions by 

this technique (MLS) will always constitute a better subset 

of both the sets of solutions by LS and BTk. Perhaps the best 

biasing technique (BT6) will be to choose the operation by BTl and 

then apply multiple left-shifting (MLS) within that facility. 

This will be undoubtedly better than BT2 because left-shifting is 

applied over all the counterparts. Here two biasing techniques are 

applied in series. First, it considers all the jobs to determine 
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which jot) can start fast (BTl) and then put the operation in the 

machine which can start processing first (MLS). 

No computer program has been written for MLS. Further research 

will be needed in exploring the different aspects of above biasing 

techniques and development of better techniques in order to increase 

the efficiency of the Monte Carlo sampling procedure used in this 

dissertation. 

We summarize in figure 5.10 the different biasing techniques 

arranged downward in the order of their increasing efficiency, 

D. Single Machines Versus Multiple Machines 

In multiple-machines facilities, different machines of the same 

facility can remain simultaneously engaged for different jobs. So 

as the number of machines increases in different facilities, the lower 

limit (LL) of the schedule times will be less dependent on E P (i,j) 

and it may be defined as mentioned earlier as max (ZP(i,j)) 
j. 

for all i, where P(ii,l) is the processing time of the job 1 on 

the most efficient machine of the facility j. Consequently, in 

multiple-machines facilities, by increasing the number of machines, it 

is always possible to have a feasible situation having the schedule 

time equal to the lower limit. But considering only this particular 

aspect, one should not be motivated to shift from single-machine 

facilities to multiple-machines facilities. Unless the machine utili

zation factor is taken into consideration, even by reducing the span 

of the schedule time by shifting to multiple-machines facilities, the 

overall cost may not justify the change. Let us consider two sample 

problems (5 x U) and (15 x k) analyzed in Chapter k and their 



www.manaraa.com

NS 

T>T1 COMB "COMB —« 5T3 

COMB 

COMB — LS 

-y\. COMB 

3T2 = BTl -r LS BTK = 3T3 + LS 

COMB COMB 

_r\ 

COMB 

-9^ COMB 

Z.3LS 

BT6 = 3T1 + MLS 

COMB — 

__ COMB -e-

Figure 5.10. Biasing techniques in multiple-machines facilities 



www.manaraa.com

123 

multiple versions (5 x l» x 10) and (15 x x 10) analyzed at the 

beginning of this chapter to see the increase in the idle time of 

the facilities when single-machine facilities are arbitrarily changed 

to multiple-machine facilities. Figures 5.11 and 5.12 display the 

Grantt charts of the two problems in single-machine facilities, and 

figures 5.13 and give the corresponding Gantt charts of their 

multiple versions. For the sake of discussion let us consider the 

schedule time to constitute a cycle and we will determine the portion 

of the cycle time each machine remains idle. From the Gantt charts, 

idle time for each machine is calculated and entered in Table 5-9» 

As mentioned in Tables 5.2 and the lower limits for the two 

problems (5 x L x 10) and (15 x It x 10) are 25 and 38, respec

tively. From Table 5.9, we can make the following observations. 

(1) Switching from single machine facilities to multiple 

machines facilities moved the schedule times towards their lower 

limits in both problems, but the shift is more considerable in the 

problem having more jobs (15 x U x 10). 

(2) In both the problems, idle time/cycle time increases in 

each original machine, and additional idle times occurred due to 

additional machines in each facility. 

(3) Except for Al, A3 and B2, idle time/cycle time is 

considerably less in the (15 x 4 x 10) problem. 

(H) An approximate idea regarding facility utilization can be 

obtained considering the idle times of the machines within each facility. 

Considering cost/idle time as the same for each machine (which is in 
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Figure 5.11. Gantt chart for problem 5 x U (single) 
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Figure 5.12. Gantt chart for problem 15 x 4 (single) 
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Table 5.9. Single machine vs multiple machines 

Single-Machine Facilities Multiple-Machines Facilities 

Cycle Time Idle Time Cycle Time Idle Time Cycle'^T?me 
Machines Ç-ycle Time ï^x " ^ î^xkx 

5xh 15x4 5x4 15x4 5x4 15x4 5x4x10 10 5x4x10 10 5x4x10 10 

Al 30 12? 11 26 O..37 0.20 28 76 l4 40 0.50 0.53 

A2 28 76 20 l4 0.71 0.18 

A3 28 76 17 61 0.61 0.80 

B1 30 127 0 1 0.00 0.01 28 76 18 2 0.67 0.03 

B2 28 76 4 l4 0.l4 0.18 

Cl 30 127 21 32 0.70 0.25 28 76 20 27 0.71 0.36 

C2 28 76 24 25 0.86 0.33 

D1 30 127 19 69 0.63 0.54 28 76 23 52 0.82 0.59 

D2 28 76 22 38 0.79 0.50 

D3 28 76 28 60 1.00 0.79 



www.manaraa.com

128 

fact an oversimplified assumption), let us define an approximate 

measure of the facility utilization by 

m 
Z (Cycle time—Idle time for machine i) 

m̂  X cycle time 

û  = utilization factor for facility f 

m̂  = number of machines in the facility f 

Table 5.10 shows the utilization factors for each facility. These are 

calculated from Table 5•9» F mentioned in Table 5.10 refers to 

the overall system. 

Table 5.10. Utilization factor for facilities 

Sin/Tle-Machine Multiple-Machines 

Facilities Facilities Facilities 

5 X ̂  15 X L 5xUxl0 15 X X 10 

A 63 8o 39 50 

B 100 99 6l 89 

C 30 75 21 66 

D 37 h6 13 3h 

F 58 75 32 56 
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The utilization factors in multiple-machines facilities for the 

problem (15 x U x 10) are consistently greater. This is expected 

because the machines are to process more jobs and thereby have less 

idle time. In Table 5.10, if we concentrate on the problem (15 x U x 

10) in multiple-machines facilities, the difference in the utiliza

tion factors for the different facilities can be explained if we con

sider the increase in the number of machines in each facility and the 

number of operations each has to perform. The processing times were 

drawn from a random number table and, therefore, there should not be 

any bias to any particular facility with respect to processing 

times. From Gantt chart (figure 5.12) the number of operations per

formed in each facility was calculated. These are entered in 

Table 5-11 

Table 5.11» Number of operations and increase in machines 

Number of Increase in U.'s for 15 x x 10 
Facilities Operations Machines (from Table 5.10) 

A 18 2 50 

B 20 1 89 

C 1 66 

D i4 2 34 
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From Table 5.11, we can conclude that the utilization factor for 

facility B is highest because of the maximum number of operations 

in this facility and the fewer number of machines. By similar 

reasoning, we can justify the worst utilization of the facility D. 

The relative advantage of the facility over the facility A can be 

explained by the likewise argument. 

On the basis of the above discussion on single machine versus 

multiple machines, we make the following remarks. 

The very first step that occurs when shifting from single-

machine facilities to multiple-machines facilities is to find which 

area has the potential need for change. In intermittent industries, 

usually every job needs some common operations and, therefore, the 

possible needs for change to multiple-machines facilities should more 

likely arise from general purpose machines rather than special purpose 

machines. From past experience management should realize mostly 

which jobs are arriving and the area of greater accumulation of in-

process inventory. 

After management is convinced about the potential need for 

change in some particular area, the next question which arises is 

how many additional machines are required. From past records of 

job arrival, management should be able to roughly calculate the 

expected number of different jobs in the shop at a particular time. 

On the basis of this set of jobs, computer simulation may be carried 

on to determine the "optimum" number of machines needed at a particu

lar facility, A cost function must be defined and»varying the number 
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of machines, a trade-off point should be determined where dollars 

saved by reducing the schedule time and in-process inventory can at 

least justify the increased expenses due to cost, idle time, mainte

nance, etc., of the additional machine units. 

E. Sample Size and Stopping Rules 

Referring to Tables 5.2 through 5.T, we notice that like single 

machine facilities, different stopping rules need a different number 

of schedules to meet their criteria. In the first three sample prob

lems, stopping rule 2 did not show any improvement in the minimum 

schedule though it tôok more CPU time. This may be due to structure 

of the problem itself. Actually, the algorithm converged earlier for 

these problems and higher number of schedules also could not provide 

any better result as shown in Table 5'12. 

As mentioned earlier, the difference between the minimum 

schedule time and its lower limit (LL) depends on the number of 

machines in each facility. Usually this difference increases rela

tively with the increase of jobs in the system. Because at present 

we do not have an exact relationship between this difference and the 

structure of the problem, we suggest stopping rule 6 instead of stopping 

rule 5- Since a "reasonable" lower bound for multiple-machines 

facilities is not available, stopping rule 5 cannot be applied even 

if CPU time is a critical factor. 

For the usual situation, as in single machine facilities, stopping 

rules 1, 3 and U can be applied. Of these three, stopping rule k is 

preferred in view of the CPU time and better result obtained. 
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Table 5.12. Relative improvement of MIN with number of schedules 
(LS) 

Sample Problems Number of Schedules Drawn 

liO 60 80 150 250 500 

5 X 4 X 10 28 - 28 - 28 26 

9 X  ̂X 10 
(used in 5.3) 

55 - 51 - 44 

15 X 4 X 10 8h 76 76 - 76 76 

6 X 7 X lU 435 - k21 415 - 412 

6 X 10 X 19 569 569 - 556 552 541 

6 X 15 X 26 813 791 759 789 781 

Considering the sample size, as in Chapter 4, let us observe 

the relative improvement of the minimum schedule with the increase 

in the number of schedules (Table 5.12). The numbers in Table 5.12 are 

the minimum schedules (MIN) with respect to left-shifting. From 

Table 5.12, we observe that in most of the cases 500 schedules gave a 

better minimum than that from 80 or 150 schedules, but the improve

ment may not justify its worth where CPU time is taken into con

sideration. 

Before we specify tho sample size for each stopping rule, let 

us consider the four sample problems from Table 5.12 to show the rela

tive improvement of "MIN" when BT4 is applied. Table 5.13 shows 

this improvement. 
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Table 5.13. Relative improvement of MIN by BT4 

Sample Problems 

ho 

Number 

50 

of Schedules Drawn 

80 100 200 

5 X 1+ X 10 (Identical) 25 - 25 25 -

9 X U X 10 
(used in 5.3) 

41+ k3 - 1+3 

15 X 1+ X 10 (Identical) - 68 - 68 68 

6 X 10 X 19 551 - 5̂ 41 - 5hl 

Considering Tables $.12 and 5.13, it is very obvious that dif

ferent simple sizes should be specified for LS and BT4. In fact, 

in BTU, smaller sample size should be used because, in this technique, 

convergence of the solution is faster and the quality is also better. 

This will compensate to a great extent the larger CPU time/ 

schedule in BT4. 

All the stopping rules need two or more samples to be drawn before 

the criterion is met. Stopping rule 2 needs more samples. With this 

above information, in Table 5.1̂ , we suggest a rough guide set of rules 

for the sample size to be specified in the program. 
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Table 5.1̂ . Stopping rules and sample size (multiple machines) 

Stopping Rules 

LS 

Sample Si ze 

BT4 

1 1+0-50 20-30 

2 _30-)i0 15-20 

3 30-40 15-25 

h UO-50 20-30 

6 30-̂ 0 15-25 

F. CPU Time 

As in single-machine facilities, there is not much difference 

in CPU time/schedule between left-shifting and non-left-shifting. 

The difference between the different stopping rules with respect 

to CPU time/schedule is not very significant. However, on the 

average, stopping rule 2 takes relatively more CPU time. Stopping 

rules 3 and 6 take almost the same time. Stopping rules 1 and 

usually require the least time on the average. 

As mentioned earlier, CPU time per schedule in BT4 is almost 

double that in left-shifting. 

In multiple-machines facilities, CPU time per schedule is 

less than that in corresponding single-machine facilities. This is 

due to the fact that the "active" operations are less than the total 

possible operations in multiple-machines facilities. 
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Figures 5.15 through 5.17 show the increase in CPU time/ 

schedule with the increase in problem size in different techniques. 
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VI. MINIMUM BOUND ESTIMATION 

A. Introduction 

For a large combinatorial problem, it is very difficult to obtain the 

true optimal solution. Different techniques, such as the Monte Carlo 

sampling procedure used in this dissertation, provide near optimal solu

tions in most cases. For practical purposes, the near optimal solutions 

may do just as well. However, in this case, the scheduler might be in

terested in knowing the different information regarding the minimum 

schedule obtained as to its "closeness" to optimal or some "estimated 

optimal" schedule. 

The different stopping rules used in this dissertation provide some 

justifications to the scheduler to believe that the best schedule so ob

tained should be close to the "best" obtainable schedule by the algo

rithm. Further information regarding the minimum schedule can be provided 

if an estimate for the lower bound ic obtained. If xmin is such an 

estimate and x is the value of the schedule so far obtained, then, as 

we indicated in Chapter 3, the probability of further improvement and the 

difference (x - xmin) will provide still other dimensions for decision 

making. Further, the estimated minimum, xmin, can be used as a basis 

for the bound Bd to be used in stopping rule 5 discussed in Chapter 3. 

This chapter will concentrate on estimating the minimum schedules 

(xmin) for different problems and interpreting other associated parameters 

with respect to those problems. Extreme value theory, which has its wide 

application in a variety of meteorological and engineering problems, is the 
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basic mechanism for estimating the minimum schedule. Gumbel (1958) pro

vided a detailed description of the underlying theory along with the three 

types of asymptotes associated with it. 

McRoberts (l97l) first demonstrated the usefulness of extreme value 

theory in plant layout problerar,. In this application, the third asymptotic, 

which is the three parameter Weibull distribution, was used as the basis 

for estimating the minimum bound value. The third asymptote for the smallest 

values arises when the underlying population distribution is bounded from 

below. In this dissertation, the procedure as outlined in the above 

paper will be followed for estimating the minimum bound value. 

There are two basic hypotheses established in applying the theory 

to the combinatorial optimization problems (Bae, 1972): 

(1) The near optimal values resulting from some powerful algorithmic 

treatment are equivalent to the smallest values of random samples of a 

large size. 

(2) The Weibull distribution "adequately" describes the behavior 

of these smallest values. 

The second hypothesis takes advantage of the fact that a Weibull 

distribution provides some flexibility and absorbs possible inaccuracy 

in describing the behavior of the random variable near the bounding value 

(Bae, 1972). Empirical studies of the application of the Weibull to the 

combinatorial problems have verified its applicability (McRoberts, I966). 

The distribution in ,1 mathematical function describing the behavior of the 

lowest (or highest) values taken from samples independently drawn from a 

parent population. The function itself is independent of the parent 
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distribution function and has the distinct advantage of having as one of 

its parameters, the boundary value of interest (McRoberts, 1971). 

The Woibull function describing the behavior of the extreme-value 

statistics is in the cumulative form (Gumbel, 1958), 

X = criterion or the smallest sample value ; 

F(X) = the probability that the xmin is equal to or less than x 

e = location parameter or the bounding value, i.e. , a constant equal 
to the lowest value of xmin; 

V = a constant parameter indicating the value of the variable such 
that the probability that xmin is equal to or less than V 
is approximately 0.63 referred to as the characteristic 
smallest value in extreme-value theory; 

K = a constant parameter indicating the shape of the distribution. 
The distribution will be positively skewed, symmetrical, or nega
tively skewed, depending on whether K is less than, equal to, 
or greater than 3=28= 

The different parameters of the Weibull distribution have been shown in 

F{X) = 1 - exp {- [(X - e)/(V-e)]̂ } (1) 

where 

fî e 6.1 

Xnnm=e X V X 

Figure 6.1. Parameters in Weibull distribution 
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When the double logrithmic transformation is performed on (l), the 

result is 

Ln Ln [l - F(X)]"'̂  = K Ln (X - e) - K Ln(V - e) (2) 

Since this is in linear form, the plot of Ln(X - e) against 

LNLN[1 - F(X)] ̂  will be a straight line with slope l/K if e is 

properly selected. In estimating the parameters with sample values by the 

method of sum of squares, it is necessary to vary the bound "e" until 

the sum of squares of deviations in the linear regression becomes minimum. 

The characteristic value V is estimated with the intercept of the verti

cal axis computed during the regression. In this dissertation, for each 

value of e, the corresponding parameters K and V were found by using 

TARSIER program. 

B. Analysis 

The figures 6.2 and 6.3 show the logarithmic plots of data for estimat

ing Weibull parameters for two problems 6 x 15 (LS) and 6 x 10 x 19 (LS). 

Better estimates would be found if we utilized more values of e (instead 

of three) or used the TARSIER program for all three parameters. 

Figures 6.4 and 6.5 show the cumulative sample distribution 

for the problem 6 x 15 (LS and NS). 

Table 6.1 shows the different parameters with respect to Weibull 

distributions corresponding to five problems. For each problem the param

eters have been estimated for NS and LS and only in two cases for BTU. 
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Table 6.1. Sample study using the Weibull distribution 

Problems 
MIN(X) LL erXrain 

Parameters 

F(X) K R V 
(for extreme values) 

—NS 1152 750 900 0.09 5.5 294 1280 

6x15 

-L8 Qhj 750 760 0.059 3.98 163 936 

r-NS 130 126 118 0.0086 4.3 37 152 

15xU 

-LS 127 126 - - - - -

-NS 55 36 49 0.006 4.92 21 66 

9x4x10 -LS 51 36 43 0.05 4.8 11 58 

1
—
 

43 36 38 0.045 3.52 10 50 

r-NS 92 38 79 0.015 5.4 39 107 

15x4x10 -LS T6 38 71 0.005 3.7 24 92 

-BT4 76 38 69 0.054 3.5 13 85 

-NS 682 507 612 0.007 4.2 400 840 

6x10x19 

LS 625 507 575 0.062 2.8 24l 708 
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In Table 6.1 we observe that in all cases we get a better estimate 

by LS than NS with respect to different parameters. The estimate 

by BT seems to be the best of all the methods. This is consistent 

with our intuition. The value of K is largest for NS because this is 

relatively a poor sampling procedure. The probability of improvement 

F(X) is smaller in some cases for NS because the distribution has a 

longer left tail for a higher value of K. In Tablé 6.1, corresponding 

to the problem 15 x 4, no parameter was estimated for LS because among 

the schedules drawn for estimation there was one schedule having the 

schedule time equal to the lower limit. Realistically, estimated 

lower bound cannot be less than the lower limit (LL). Corres

ponding to the same problem for NS, the estimated lower bound was 

found to be below the lower limit. Therefore, the probability of 

improvement F(x) was found on the basis of lower limit and not the 

estimated value. 

A large K value accompanied by a long left tail is an indication 

of weakened sampling method. Where K is as large as 5 or 6, the esti

mated lower bound may lie well below the best one found. If this happens, 

a search for a better schedule should be carried out. The effect of 

the slope of the distribution is illustrated in figure 6.6. The variate 

(X - e) is standardized to give a better comparison in the distributions 

having different characteristic values. 

If more samples are taken as extreme values, the shape and location 

parameters can be better estimated. But because of the computer time used 

in generating samples, a decision must be made to obtain or not obtain a 

better estimation at the expense of an increase in computation time. Let 
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Figure 6.6. Effect of shape parameter on "skewness" of sangle distributions 
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N be the total number of samples drawn and n the sample size in which an 

extreme point is selected. As we increase the value of n, we should 

N 
expect abetter estimate. But if — decreases beyond a certain value, the 

number of extreme points may be so small that a reasonable analysis is not 

possible. For a fixed value of n if we increase the value of N, 

dispersion of the extreme values will be more and estimation may thus be 

N 
affected. It seems that there should be a particular value of — for 

which a better estimation of the parameters is ensured. However, very 

small values of N will give a poor estimate. 

In Table 6.2, the values of the different parameters have been cal

culated for various values of N and n with respect to a $ x 4 prob

lem. The numbers correspond to a particular value of e. We see that as 

we increase the value of n, we get a better estimate with regard to 

the skewness of the distribution. However, from our results we could not 

come up with any generalized conclusion. Increasing the efficiency of the 

JT 
sampling procedure to get a good estimate by fixing an "optimum" — is 

one of the critical and important aspects of the study of Weibull 

N 
distribution. With different values of —, if the TARSIER program is 

use i for different problems in the estimation of the Weibull parameters, 

N 
some idea may be obtained regarding a good value of —• 

If a good estimate is obtained, the scheduler may use this as a basis 

for finding the bound Bd to be used in stopping rule 5 discussed in 

Chapter 3. 



www.manaraa.com

Table 6.2. Parameters for different number of sançles (N) and sample size inj 

N 
200 400 500 600 

V = 29 V 29 V = 29 V = 29 

K = 3.53 K = 3.01 K = 2.6 K = 3.34 

 ̂ F(X) = .02048 F(X) .03597 F(X) = .05586 F(X) = .02517 

SS = 0.1764 SS = .2618 SS = .2021 SS = 
.17 

V = 27 V = 27 V = 27 V = 27 

X = 3.1 K 
= 

3.00 K = 3.00 K = 3.19 

F(X) = .11008 F(X) = .1175 F(X) = .1175 F(X) = 
.10379 

SS .22 SS .153 SS = .143 SS = .21 

V = 26 V = 26 V = 26 V 26 

20 
K = 2.8 K = 

2.75 K 2.75 K = 3.18 
20 

F(X) = .27481 F(X) = .27957 F(X) = 
.27957 F(X) = .21+076 

SS = .247 SS = .25 SS = 
.253 SS = .284 

V = 26 V 26 V = 26 

25 
K = 3.92 K = 

3.85 K = 
3.95 

25 
F(X) = .18457 F(X) = 

.18935 F(X) = 
.18256 

SS = .104 SS = 0.11 SS = 0.12 
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VII. TRUCK ROUTING ALGORITHM 

A. Introduction 

The classical transportation model represents shipping schedules 

that minimize the cost of shipping products from origins to destina

tions. Due to the very nature of its formulation, this model when 

applied to the trucking industry faces some basic problems. In 

particular, various types of information such as how many loads to be . 

taken each day, how to return from each delivery, how to minimize the 

cost of the trips when the truck is travelling empty are usually not 

included in the basic transportation model. This necessitates some 

modification of the model before it can be a useful tool for a trucking 

firm. The purpose of the modification is to minimize the total travelling 

time of a group of trucks to satisfy a given set of demands and to 

determine the "exact" route each truck should follow on each day. 

The basic situation to which we will apply a modified form of 

the scheduling algorithm, explained in Chapter II, is one where a 

trucking company needs to ship one bulk product such as oil, gasoline, 

or cement from m different origins or warehouses to n destina

tions. Our objective is to produce a schedule which will give the 

"exact" route each truck is to follow so that the total travelling time 

of all the trucks is minimized. Each route will begin by leaving the 

trucking terminal to go to some origin and end by returning to the 

terminal from some destination. 
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B. Mathematical Model 

Kammin (1976) developed a mathematical model of the above situa

tion for arriving at an optimal solution. Before we discuss a short 

version of this mathematical model, let us look into the following 

basic assumptions under which it is constructed (Kammin, 19T6): 

(i) The trucking firm has one terminal to maintain and refuel its 

trucks. Each truck must start from this terminal in the morning and 

return to this terminal at the end of the day. 

(ii) Only one type of product is shipped. Therefore, a truck is 

ready to be reloaded as soon as it is emptied. 

(iii) The origins and destinations are close enough to each other 

so that more than one delivery can be made in one day. 

(iv) The trucks will be routed so that each complete route can 

be accomplished in one shift of eight to twelve hours. 

(v) The total number of loads of the product available at the 

origins is equal to the total number of loads required at the 

destinations. 

(vi) Minimizing the time required to satisfy a set of demands is 

equivalent to minimizing the cost of satisfying the demands. 

Let us now discuss the objective function and different constraints 

of the mathematical model for the modified transportation problem. 

1. The objective function 

r n m n m m n 
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where 

X. = the number of loads delivered from origin i to desti-
ijk 

nation j on the kth day. 

c.j = the time it takes to deliver one load of product from 

origin i to destination j. 

y. = the number of empty trips from destination j to origin 
1 jK 

i on the kth day. 

d. = the time it takes to travel from destination j to origin i, 
i j 

= the number of trips from the terminal to origin i on 

the kth day, 

= the time it takes to travel from the terminal to origin i, 

v̂  ̂ = the number of trips from destination J back to the 

terminal on the kth day. 

dj = the time it takes to travel from destination j back to 

the terminal. 

2. Supply and demand constraints 

r n 
T. T. X. = a., 1=1, ..., m, (2) 
k=l .1=1  ̂

r m 
E Z X = b , j=l, , n, (3) 

k=l i=l J 
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wher<': 

= the number of loads available at origin i, 

bj = the number of loads required at destination j. 

3. Routing constraints 

It is necessary that the solution for one day, i.e., one specific 

k, should be a route that can be actually driven by a truck. The 

truck must start at the terminal, alternate between origins and desti

nations, and return to the terminal from some destination at the end of 

the day. A set of constraints from (1̂ ) to (j) insures that these 

requirements are met. 

m 
S w =1, k = 1, ..., r (It) 
i=l 

n 
Z Y,, = 1; k = 1, ..., r (5) 
j=l 

Xijk = yijk + "ik i=l. •••.m (6) 

k=l, ..., n 

m m 

/ ijk " / îjk k̂ " 1—1 l=j. 
k=l, ..., n 

The sets of constraints (6) and (T) specify that for any given 

day and one specific origin or destination, the number of arrivals equals 
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the number of departures of the truck. 

1*. Balance constraints 

It is considered in the model that the hours travelled per day are 

limited and the time driven each day is kept fairly consistent by the 

following constraints: 

n 
I 

m 
z x, 

j=l i=l ijk 

m 

+ 1, k=l, ..., r ( 8 )  

5. Subtour constraints 

One more type of constraint is required for the above mathe

matical model to produce a workable solution. A subtour is a complete 

loop in a route that is not connected to the rest of the route. The 

set of constraints (6) and (j) can also be satisfied by such a 

loop. So these subtours must be prevented since a truck cannot follow 

a route that contains a subtour. Instead of discussing the different 

subtour constraints of the model in this dissertation, we simply 

refer to Kammin (1976). 

C. Motivation for Monte Carlo 

Again referring to Kammin (1976), the following three problems 

provide us some information regarding the number of constraints and 

variables for the above mathematical modeli 
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Problem 1 Problem 2 Problem 3 

(2 X 2 X 10 X 20) 

2 origins 

(3 X 3 X 10 X 20) 

3 origins 

(1+ X 3 X 10 X 20) 

h origins 

2 destinations 3 destinations 3 destinations 

20 loads 20 loads 20 loads 

10 trucks 10 trucks 10 trucks 

Table 7.1 shows how the number of variables and constraints 

increase with problem size. In fact, these numbers depend on the number 

of origins, number of destinations and number of trucks. With a 

slight increase in the problem size, subtour constraints increase at 

a very high rate. Though the mathematical model would give an optimal 

solution, depending on the problem size, the number of variables and 

constraints may be so high that it will not be economical with 

respect to the resources needed for computer time. This aspect of 

the mathematical model motivated the use of the Monte Carlo technique 

which can generate many schedules within a very short time. It is 

expected that this technique will provide us a near optimal solution 

which can justify its worth against an optimal solution which requires 

much more computer time. Furthermore, the Monte Carlo technique, as 

we shall see later, is more flexible and easier to apply under dif

ferent situations. In the rest of this chapter, we will concentrate 

on developing a Monte Carlo algorithm which will be suitable for a truck

ing industry as mentioned earlier and illustrate the algorithm with 

different examples. 
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Table T-l- Number of variables and constraints 

Parameters Subtour Due to 
Problem of the model excluded subtour Total 

1 Variables 120 1+0 l60 

(2 X 2 X 10 X 20) Constraints 65 80 1̂ 5 

2 Variables 240 90 330 

(3 X 3 X 10 X 20J Constraints 96 360 U56 

3 Variables 280 120 bOO 

(U x 3 x 10 x 20). Constraints 107 720 827 
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D. Development of Algorithm 

Let us consider a simple problem having two origins 01 and 02, 

two destinations D1 and D2, one terminal T, two trucks and three 

loads. Let us also assume that truck 1 will carry 1 load and truck 2 

will carry the other two. The following data matrix gives the other 

relevant information. 

Table 7.2. Data matrix for a sample problem (2x2x2x3) 

01 02 D1 D2 a.* 

T 3 4 

01 (Time/cost matrix) 

02 

** 

» 
â  = number of loads available at origin i, (i a 1,2) 

** bj = number of laods required at destination j, (j = 1,2) 

The purpose of the algorithm will be to define a route for each 

truck so that the total travelling time becomes "minimum" under the 

above limitations. Each route starts at the terminal (T) and ends 

at the terminal. 

Before we attempt to modify the algorithm of Chapter 2 to solve the 

above transportation problem, we have to define the problem in the context 
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of a multi-machines multiple facilities system. Here, origin refers 

to a facility in which two origins 01 and 02 refer to the two 

machines. Similar interpretation holds for destination and terminal. 

For the sake of illustration of the algorithm, origins, destinations 

and terminal will refer to facilities 1, 2, and 3, respectively. 

Trucks refer to the respective jobs to be processed. The travelling 

time for a truck from a previous facility refers to the processing time 

with respect to the present facility. As an example, if truck 1 takes 

two hours to travel from the terminal to origin 1, then in terms of the 

scheduling algorithm, it will be stated as follows: processing time 

for job 1 in machine 1 of facility 1 is two hours. 

In the transportation problem, more than one truck can travel 

simultaneously from one facility to another. In a scheduling algorithm, 

it means that more than one job can be simultaneously processed in a 

single machine. This aspect along with the different limitations in 

the transportation problem discussed at the beginning of this section 

necessitates the modifications of the algorithm developed in Chapter 2. 

At this stage, the notation that will be used in the algorithm to 

specify different operations can be better explained if we define the 

transportation problem as a linear graph. Referring to the problem 

stated earlier and considering for the time being infinite capacity and 

demand at each origin and destination respectively, we can define the 

route of each truck independent of the other by two linear graphs as 

shown in figures 7.1 and 7.2. 
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Figure 7.1. Possible routes for truck 1 

Figure 7.2, Possible routes for truck 2 

Pictorial representations of the precedence relations of technological 

and scheduling orderings have been completely defined by the network 

diagrams. We will denote each node of these linear graphs by 5 

integers (ijk&m), where 

i; facility (origin, destination or terminal) 

j: machine within the facility (01 or 02 if the 
facility is the origin, etc.) 

k: job to be processed (whether truck 1 or truck 2) 

t: Wci time job k is in facility i (highest value 
of £ is the number of loads a truck can carry) 

m; machine within the previous facility the truck is 
coming from 

Thus, for example, in figure T.2, let us refer to the operation with 

an asterisk (*) on it. Here 
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Facility: destination => i = 2 

Machine: destination 1 => j = 1 

Job: truck 2 => k = 2 

Second time truck 2 is in facility 2 (destination), so £ =2 

Machine of the previous facility the truck is coming from is 02, so m = 2 

So the operation will be denoted by (21222). It is to be noted that 

each operation in the algorithm developed in Chapter 2 was denoted by 

U integers instead of 5. 

The algorithm to be developed here differs from that in Chapter 2 

not only in the logics, but also in structure. Here we have to add one 

more column CLO, the figures therein indicate the number of loads 

available at each origin or required at each destination. At the be

ginning of each schedule the entries in CLO should be initialized. 

The other columns have the identical meaning as that in Chapter 2. It 

should be noted that the concept of left shifting is meaningless in a 

transportation problem because more than one truck can come simul

taneously to any facility and the operation will always start at the 

max job time. 

Let us now discuss the different steps needed in the computer 

program for generating a feasible route for each truck. As before, 

this program can handle 500 operations and 1500 schedules. 

Step 1. Resolving or initializing: Resolve the data and make the proper 

entry to CLO and to each of the arrays from ICI to ICT. If any 

schedule is already found, reinitialize all the entries. 
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step 2 .  Randomization in selecting a process; Check IC3 to see 

whether there is any zero entry in any row. If no zero entry is fovind, 

it implies that a feasible route has been obtained for each truck and 

step 6 follows. Otherwise, count the number of zeroes and select one 

of the processes at random. IFIND is the row selected by randomization. 

Step 3. Processing the operation; Process the operation at the present 

maximum job time. Put this value in IC6. To this value, add the entry 

in ICU and put it in IC7. Find the maximum entry (MAXM = IMAX) in 

IC5 corresponding to the machine. Make MAXM = MAXM + 1 and put it 

in column 5* If MAXM is not equal to the entry in CLO, turn the 

switches from 0 (or l) to -1 corresponding to IFIND and its 

counterparts and then proceed to step 5. Otherwise, go to step 4. 

Step 4. Blocking the machine: Multiply the entry in CLO by -1 and 

turn all the switches in IC3 corresponding to the machine to -1. It 

means no more new entries are possible in any column for this machine. 

Step 5. Operations to follow; Check IC2. If there is no entry 

corresponding to IFIHD, go to step 2. Otherwise, corresponding to each 

operation, check the entry CLO. If it is negative, do nothing and go to 

step 2. Otherwise, turn the switch in IC3 from 1 to 0 for the 

corresponding operation and go to step 2. 

Step 6. Schedule time: Add all the entries in IC7 corresponding to 

the terminal. This is the total travelling time CT for all the trucks. 

If CT is less than or equal to the best previous CT, write out this 

tableau. 
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Step 7. Stopping rule; Update NPROB (number of feasible solutions) 

by NPROB = NPROB +1. If NPROB is not a multiple of the sample 

number specified, go to step 1. Otherwise, call the desired stopping 

rule and check the criterion. If it is not met, go to step 1. Other

wise, proceed to the next step. 

Step 8. Printout: Print all the travelling times found so far in 

descending order. The program is terminated at this point. 

Before we conclude this section, let us summarize some of the 

differences between the algorithm developed here and the one in 

Chapter 2. 

(i) Each operation in this section is denoted by five integers, 

while in Chapter 2, it is denoted by four integers. 

(ii) In order to keep track of the availabilities of the origins 

and requirements at destinations, an extra column CLO is needed in 

transportation algorithm. 

(iii) In Chapter 2, the operation is processed either according to 

the left-shifting principle or at max (maximum job time and maximum 

machine time). But in the transportation algorithm, the operation is 

always processed at the maximum job time. 

(iv) Instead of selecting one operation at random in CL2 in 

Chapter 2, in the transportation algorithm all the operations are 

taken into consideration, checked with the respective entries in CLO 

and adjusted accordingly. If one operation is selected at random, then 

some routes may not be completed at all. 
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(v) In step 6 of the algorithm in Chapter 2, the highest entry in 

ICT is the schedule time, while the sum of the entries in IC7 

corresponding to terminal is the total travelling time of all the trucks. 

E. Iteration Procedure 

Referring to the discussion in the previous section, let us now 

proceed to apply the algorithm to the problem stated at the "beginning 

of section D. 

In Table 7 - 3 ,  the problem has been defined completely in algo

rithmic notations, showing the technological orderings between the opera

tions. The processing times have been entered in column It. 

To start with, we see that certain operations are scheduleable ; 

i.e., there are 0 entries in CL3 corresponding to these operations. 

Iteration 1; From the scheduleable operations 11111, 11211, 12111, 

12211, let us randomly select 11111. Truck 1 was at the terminal and 

so the maximum job time MJM =0. So, starting time is 0; the comple

tion time is 0 + Cj^ = 0 + 3 = 3. The Index corresponding to IFIND in 

IC5 is increased by 1. So MAXMJ = 1. 

The entry in CLO corresponding to the machine (origin l) is 2. 

So, MAXMJ f (entry in CLO) which implies we turn the switches in 

IC3 corresponding only to 11111 and its counterpart 12111 from 

0 to -1. 

In column 2 corresponding to IFIND, there are two operations, 

21111, 22111. The entries in CLO for destinations 1 and 2 are 

positive and so the switches in IC3 corresponding to 21111 and 22111 
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Table 7»3* Iteration 0 

CLO CLL CL2 CL3 CLh CL5 CL6 CL7 

11111 + Origin 1, Truck 1 21111, 22111 0 3 0 0 0 

11211 \ 21211, 22211 0 3 0 0 0 
2 

11221> -> Origin 1, Truck 2 21221, 22221 1 2 0 0 0 

11222 j 21221, 22221 1 6 0 0 0 

12111 Origin 2, Truck 1 21112, 22112 0 h 0 0 0 

1 
12211 1 I 21212, 22212 0 k 0 0 0 

12221 j ' -*• Origin 2, Truck 2 21222, 22222 1 7 0 0 0 

12222/ 
1 

21222, 22222 1 k 0 0 0 

21111) Destination 1, 31111 1 2 0 0 0 

21112J Truck 1 31111 1 7 0 0 0 

1 
21211 ) 11221, 12221 1 2 0 0 0 

21212( 
Destination 1, 

11221, 12221 1 7 0 0 0 

21221j Truck 2 31211 1 2 0 0 0 

21222/ 31211 1 7 0 0 0 

22111 ) ^ Destination 2, 31112 1 6 0 0 0 

22112/ 
Truck 1 

31112 1 4 0 0 0 

2 
22211 ) 11222, 12222 1 6 0 0 0 

2 
22212/ Destination 2, 11222, 12222 1 1* 0 0 0 

22221j Truck 2 31212 1 6 0 0 0 

22222j 31212 1 0 0 0 

31111 ) 1 3 0 0 0 

99 
3111 ]j 

Terminal, Truck ] 
1 6 0 0 0 

99 
31211) 1 3 0 0 0 

31212] 
Terminal, Truck 2 

1 6 0 0 0 
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are reset from 1 to 0, showing that the operations are now schedule-

able. All these changes are shown in Table 7'^ 

Iteration 2: How we have the possibility of scheduling one of the 

operations 11211, 12211, 21111 and 22111. Let us suppose we randomly 

select 21111. Truck 1 has already travelled 3 units of time, so 

MJM = 3 which means the starting time for this operation is Cg = 3 

and the completion time = 3 + 2 = 5. MAXMJ = MAXMJ + 1 = 

0 + 1 = 1  w h i c h  i s  e q u a l  t o  t h e  e n t r y  i n  C L O  f o r  d e s t i n a t i o n  1 .  

So, corresponding to the destination 1, multiply the entry in CLO by 

-1 and turn all the switches in CL3 to -1. This means no more new 

entries are possible in any of the columns for destination 1. Turn 

also the switch in IC3 from 0 to -1 for 22111, the counterpart 

of 21111. In column 2 corresponding to IFIND is 31111. The entry in 

CLO for terminal is positive so the switch in IC3 corresponding to 

31111 is reset from 1 to 0, showing that it is scheduleable. 

Table 7-5 reflects these changes. 

Iteration 3: Among the scheduleable operations 12211 and 

31111, we randomly select 12211. Truck 2 was at the terminal and the 

maximum Job time MJM =0. So the starting time is Cg = 20 and the 

completion time is C^ = C^ + = 0 + 4 = 4. MAXMJ = MAXMJ + 1 = 

0+1=1 which is equal to the entry in CLO for origin 2. So 

corresponding to this origin, multiply the entry in CLO by -1 and 

turn ail the switches in IC3 to -1. Turn also the switch in IC3 

from 0 to -1 for 11211, counterpart of 12211. 

In column 2 corresponding to IFIND, there are two operations 21212, 
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Table 7.4. Iteration 1 

CLO CLl CL2 CL3 CLit CL5 CL6 CL7 

11111 -• Origin 1, Truck 1 211111, 22111 -1 3 1 0 3 

11211' 21211, 22211 0 3 0 0 0 
2 

11221 Origin 1, Truck 2 21221, 22221 1 2 0 0 0 

11222, 21221, 22221 1 6 0 0 0 

12111 Origin 2, Truck 1 21112, 22112 -1 k 0 0 0 

12211' 21212, 22212 0 k 0 0 0 
1 

12221* -> Origin 2, Truck 2 21222, 22222 1 7 0 0 0 

12222/ 21222, 22222 1 4 0 0 0 

2111li -»• Destination 1, 31111 0 2 0 0 0 

21112 Truck 1 31111 1 7 0 0 0 

21211 11221, 12221 1 2 0 0 0 
1 

21212 11221, 12221 1 7 0 0 0 

21221 
) Destination 1 » 31211 1 2 0 0 0 

21222, 
Truck 2 

31211 1 7 0 0 0 

22111 ( Destination 2 31112 0 6 0 0 0 

22112 ) Truck 1 31112 1 4 0 0 0 

22211 ) 11222, 12222 1 6 0 0 0 
2 

22212 Destination 2 9 11222, 12222 1 1» 0 0 0 

22221 Truck 2 31212 1 6 0 0 0 

22222 31212 1 h 0 0 0 

31111 Terminal, Truck 1 
1 3 0 0 0 

99 
31112, ( 1 6 0 0 0 

99 
31211 ] 1 6 0 0 0 

31212 r 
Terminal, Truck 2 

1 6 0 0 0 
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Table 7.5. Iteration 2 

CLO CLL CL2 CL3 CLLT CL5 CL6 CL7 

11111 -*• Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

2 11211 21211, 22211 0 3 0 0 0 

11221 1 ->• Origin 1, Truck 2 21221, 22221 1 2 0 0 0 

11222J 21221, 22221 1 6 0 0 0 

12111 ->• Origin 2, Truck 1 21112, 22112 -1 k 0 0 0 

12211 ) 21212, 22212 0 k 0 0 0 
1 

12221 •> Origin 2, Truck 2 21222, 22222 1 7 0 0 0 

12222> 21222, 22222 1 k 0 0 0 

21111j Destination 1, 31111 -1 2 1 3 5 

21112, Truck 1 31111 -1 7 0 0 0 

2 
21211 11221, 12221 -1 2 0 0 0 

21212 ( Destination 1 11221, 12221 -1 7 0 0 0 

21221 Truck 2 31211 -1 2 0 0 0 

21222^ 31211 -1 7 0 0 0 

22111 ; ^ Destination 2 31112 -1 6 0 0 0 

22112, Truck 1 31112 1 h 0 0 0 

2 
22211 11222, 12222 1 6 0 0 0 

222121 Destination 2, 11222, 12222 1 k 0 0 0 

22221 Truck 2 31212 1 6 0 0 0 

22222; 31212 1 1+ 0 0 0 

31111 ) 0 3 0 0 0 

99 
31112^ 

> Terminal, Truck 1 
1 6 0 0 0 

99 
31211 ) 1 3 0 0 0 

31212, 
f Terminal, Truck 2 

1 6 0 0 0 
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22212. The entry in CLO for destination 1 is negative and that for 

destination 2 is positive. This means we cannot do anything with 

operation 21212 and we simply turn the switch in IC3 corresponding to 

22212 from 1 to 0, showing that it is scheduleable. This itera

tion is shown in Table 7*6. 

Iteration U: Among the two scheduleable operations 22212 and 31111, 

let us randomly select 22212. Truck 2 has already travelled U 

units of time. So MJM = U which means the starting time of the opera

tion is Cg = U and the completion time k b = 8. 

MAXMJ = MAXMJ +1=1 

The entry in CLO corresponding to this machine (or destination 2) is 

2. So f-lAXMJ f C^ (entry in CLO) which implies the switches in 

IC3 corresponding only to 22212 and its counterpart 21212 should 

be made -1. 

In column 2 corresponding to IFIND, there are two operations, 

11222, 12222. The entry in CLO for origin 1 is positive and that 

for origin 2 is negative. As in iteration 3, we cannot proceed 

towards the operation 12222 and we simply turn the switch in IC3 

corresponding to 11222 from 1 to 0, showing that it is now schedule-

able. This iteration is shown in Table 7-7. 

Iteration 5: Among the scheduleable operations 11222 and 31111» let 

us randomly select 11222. Truck 2 already travelled 8 units of time. 

So MJM = 8 which means the starting time of the operation is C^ = 8 

and the completion time C^ = C^ + C^ = 8 + 6 = lb. MAXMJ = MAXMJ + 1 

=1+1=2 which is equal to the entry in CLO for origin 1. So, 
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Table 7-6. Iteration 3 

CLO CLL CL2 CL3 CLH CL5 CL6 CL7 

11111 Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

11211 ) 21211, 22211 -1 3 0 0 0 
2 

11221> Origin 1, Truck 2 21221, 22221 1 2 0 0 0 

11222; 21221, 22221 1 6 0 0 0 

12111 ->• Origin 2, Truck 1 21112, 22112 -1 U 0 0 0 

-1 
12111 ) 21212, 22212 -1 h 1 0 k 

12221> ->• Origin 2, Truck 2 21222, 22222 -1 7 0 0 0 

12222J 21222, 22222 -1 k 0 0 0 

21111 ) 
i 

Destination, 31111 -1 2 1 3 5 

21112/ Truck 1 31111 -1 7 0 0 0 

-1 
21211 \ 11221, 12221 -1 2 0 0 0 

21212 / Destination 1, 11221, 12221 -1 7 0 0 0 

21221J Truck 2 31211 -1 2 0 0 0 

21222; 31211 -1 7 0 0 0 

22111 ) Destination 2, 31112 -1 6 0 0 0 

22112) Truck 1 31112 1 k 0 0 0 

22211 ̂  11222, 12222 1 6 0 0 0 
2 

22212 / Destination 2, 11222, 12222 0 k 0 0 0 

222211 Truck 2 31212 1 6 0 0 0 

22222Y 31212 1 Ij 0 0 0 

31111 ) 0 3 0 0 0 

99 
31112/ 

->• Terminal, Truck 1 
1 6 0 0 0 

99 
31211 ) 1 3 0 0 0 

31212? 
->• Terminal, Truck 2 

1 6 0 0 0 
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Table T-T- Iteration k 

CLO CLl CL2 CL3 CLU CL5 CL6 CLT 

11111 ->• Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

11211 ) ]1]11, ]]]11 -1 3 0 0 0 

^ 11221 ' 
f 

-> Origin 1, Truck 2 21221, 22221 1 2 0 0 0 

11222, 21221, 22221 0 6 0 0 0 

12111 -> Origin 2, Truck 1 21112, 22112 -1 It 0 0 0 

12211 ) 21212, 22212 -1 k 1 0 h 

12221 > Origin 2, Truck 2 21222, 22222 -1 7 0 0 0 

12222) 21222, 22222 -1 k 0 0 0 

21111 ^ Destination 1, 31111 -1 2 1 3 5 

21112, Truck 1 31111 -1 7 0 0 0 

21211 11221, 12221 -1 2 0 0 0 

21212 Destination 11221, 12221 -1 T 0 0 0 

21221 
-» 
Truck 2 31211 -1 2 0 0 0 

21222/ 31211 -1 T 0 0 0 

22111; Destination 2, 31112 -1 6 0 0 0 

22112/ Truck 1 31112 1 k 0 0 0 

22211 11222, 12222 1 6 0 0 0 

222121 Destination 2, 11222, 12222 -1 h 1 h 8 

22221 Truck 2 31212 1 6 0 0 0 

22222; 31212 1 h 0 0 0 

99 

31111 ; 
31112/ Terminai, Truck 1 

31211 ) 

31212j "*• Terminal, Truck 2 

0 3 0 0 0 

1 6 0 0 0 

1 3 0 0 0 

1 6 0 0 0 
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corresponding to this origin, multiply the entry in CLO by -1 

and turn all the switches in ICS to -1. The switch in IC3 for 

12222, counterpart of 11222 is already -1. 

In column 2 corresponding to IFIND, there are two operations 

21221, 22221. The entry in CLO for destination 1 is negative and 

that for destination 2 is positive. This means that operation 21221 

can never be explored and we simply turn the switch in ICS corres

ponding to 22221 from 1 to 0, showing that it is scheduleable. 

This iteration is shown in Table 7«8. 

Iteration 6 ; Among the two scheduleable operations 22221 and Sllll, 

we randomly select 31111- Truck 1 has already travelled 5 units of 

time. So MJM = 5 which means C^ = 5 and C^ = C^ + C^ = 5 + S = 8. 

MAXMJ = MAXMJ +1=0+1=1 which is not equal to the entry in 

CLO for the terminal which implies we turn the switch in ICS corres

ponding only to 31111. This iteration ends here because there is no 

entry in column 2. Table J.9 displays this iteration. 

Iteration 7: We select the only remaining scheduleable operation 

22221. Truck 2 has already travelled l4 units of time. So MJM = l4, 

which means C. = l4 and C = C, + C, = lU + 6 = 20. 
6 T o 4 

MAXMJ = MAXMJ +1=1+1=2 which is equal to the entry in CLO 

for doiitination 2. So corresponding bo this destination, multiply the 

entry in CLO by -1 and turn all the switches in ICS to -1. The 

switch in ICS for 21221, the counterpart of 22221 is already -1. 

In column 2 corresponding to IFIND is 31212. The entry in CLO 
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Table 7.8. Iteration 5 

CLO CLl C12 CL3 cm CL5 CL6 CLT 

11111 Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

2 11211 j 21211, 22211 -1 3 0 0 0 

11221 > ' •* Origin 1, Truck 2 21221, 22221 -1 2 0 0 0 

11222/ 21221, 22221 -1 6 2 8 Ik 

-1 

Origin 2, Truck 1 21112, 22112 -1 k 0 0 0 

21212, 22212 -1 k 1 0 h 

Origin 2, Truck 2 21222, 22222 -1 7 0 0 0 

21222, 22222 -1 4 0 0 0 

21111 ) 
-> 

Destination 1, 31111 -1 2 1 3 5 

21112) Truck 1 31111 -1 7 0 0 0 

21211^ 11221, 12221 -1 2 0 0 0 

21212 / Destination 1, 11221, 12221 -1 7 0 0 0 

21221 1 
• 4" 

Truck 2 31211 -1 2 0 0 0 

21222J 31211 -1 7 0 0 0 

22111 ) Destination 2, 31112 -1 6 0 0 0 

22112/ Truck 1 31112 1 It 0 0 0 

222111 
1 

11222, 12222 1 6 0 0 0 

^ 22212 / Destination 2, 11222, 12222 -1 k 1 8 

22221 1 
->• 

Truck 2 31212 0 6 0 0 0 

22222] 31212 1 k 0 0 0 

31111 

99 31112 

31211 31211 ) 

31212 J 

0 3 0 0 0 
Terminal, Truck 1 

1 6 0 0 0 

1 3 0 0 0 
Terminal, Truck 2 

1 6 0 0 0 
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Table T.9. Iteration 6 

CLO CLL CL2 CL3 CLU CL5 CL6 CL7 

11111 -v Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

112111 21211, 22211 -1 3 0 0 0 

11221 -)• Origin 1, Truck 2 21221, 22221 -1 2 0 0 0 

11222) 21221, 22221 -1 6 2 Ik 

12111 ->• Origin 2, Truck 1 21112, 22112 -1 h 0 0 0 

12211) 21212, 22212 -1 h 1 0 4 

122211 -v Origin 2, Truck 2 21222, 22222 -1 1 0 0 0 

12222V 21222 -1 k 0 0 0 

21111 ) 
-> 
Destination 1, 31111 -1 2 1 3 5 

21112j Truck 1 31111 -1 7 0 0 0 

21211 " ) 11221, 12221 -1 2 0 0 0 

21212 
-1 

/ Destination 1, 11221, 12221 -1 7 0 0 0 

21221 Truck 2 31211 -1 2 0 0 0 

21222/ 31211 1 7 0 0 0 

22111? -V 
Destination 2, 31112 -1 6 0 0 0 

22112 J Truck 1 31112 1 11 0 0 0 

22211 ' 11222, 12222 1 6 0 0 0 

^ 22212 Destination 2, 11222, 12222 -1 I; 1 8 

22221 Truck 2 31212 0 6 0 0 0 

22222I 31212 1 h 0 0 0 

13 15 8 

1 6 0 0 0  

1 3 0 0 0 

1 6 0 0 0  

31111/ 

3111^1 Terminal, Truck 1 

99 
31211 1 

31212 
p j -> Terminal, Truck ? 
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for the terminal is positive so the switch in IC3 corresponding to 

31212 is reset from 1 to 0, showing that it is scheduleable. 

This iteration is shown in Table T.IO. 

Iteration 8; The only scheduleable operation now is 31212. Truck 2 

has already travelled 20 units of time. So MJM = 20 which means 

C, = 20 and C„ = C, + C, = 20 + 6 = 26. 
6 7 6 It 

MAXMJ = MAXMJ +1=1+1=2 which is not equal to the entry in 

CLO for the terminal which implies that we turn the switch in IC3 

corresponding only to 31212. This iteration ends there because there 

is no entry in column 2. Changes have been shown in Table 7.11. 

At this point we check IC3, and we find no zero entry which 

implies that we have obtained a feasible route for each truck. 

Check IC7 and add the entries in this array corresponding to the 

terminal. The figure so obtained is the total travelling time. In 

this problem this is 26 + 8 = 3U units of time. 

The operations constituting the route travelled by truck 1 are 

11111, 21111 and 31111 and those corresponding to the route for truck 2 

are 11222, 12211, 22212, 22221 and 31212. The routes for the two 

trucks are shown in figures 7.3 and 7.k. The number below the arrow 

indicates the travelling time while the number above the arrow shows the 

specific operation. 
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Table T.10. Iteration J 

CLO CLl CL2 CL3 CLk CL5 CL6 CL7 

11111 Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

11211) 21211, 22211 -1 3 0 0 0 

112211 Origin 1, Truck 2 21221, 22221 -1 2 0 0 0 

11222J 21221, 22221 -1 6 2 8 Ik 

12211 ) 

12222J 

->• Origin 2, Truck 1 21112, 22112 -1 k 0 0 0 

21212, 22212 -1 k 1 0 k 

Origin 2, Truck 2 21222, 22222 -1 1 0 0 0 

21222, 22222 -1 k 0 0 0 

21111 ) Destination 1, 31111 -1 2 1 3 5 

21112 J Truck 1 31111 -1 7 0 0 0 

21211 1 11221, 12221 -1 2 0 0 0 
-1 

21212 ( Destination 1, 11221, 12221 -1 7 0 0 0 

21221 Truck 2 31211 -1 2 0 0 0 

21222J 31211 -1 7 0 0 0 

22111 ? Destination 2, 31112 -1 6 0 0 0 

22112 j "^Truck 1 31112 -1 k 0 0 0 
""2 

22211 J 11222, 12222 -1 6 0 0 0 

222121 Destination 2, -1 1; 1 k 8 

222211 Truck 2 -1 6 2 14 20 

^2222) -1 L 0 0 0 

31111 ) 

31112) 

31211j 

31212 J 

-1 3 1 k 8 
-> Terminal, Truck 1 

1 6 0 0 0 

1 3 0 0 0 
->• Terminal, Truck 2 0 6 0 0 0 
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Table 7.11. Iteration 8 

CLO CLl CL2 CL3 CLU CL5 CL6 CL7 

11111 -»• Origin 1, Truck 1 21111, 22111 -1 3 1 0 3 

112111 21211, 22211 -1 3 0 0 0 
2 

11221 ->• Origin 1, Truck 2 21221, 22221 -1 2 0 0 0 

II222J 21221, 22221 -1 6 2 8 Ih 

12111 Origin 2, Truck 1 21112, 22112 -1 k 0 0 0 

-1 12211j 21212, 22212 -1 k 1 0 h 

12221 -»• Origin 2, True, 2 12222, 22222 -1 1 0 0 0 

12222, 21222, 22222 -1 k 0 0 0 

21111 Destination 1 31111 -1 2 1 3 5 

21112, Truck 1 31111 -1 7 0 0 0 

-1 
21211 11221, 12221 -1 2 0 0 0 

21212 Destination 1, 11221, 12221 -1 7 0 0 0 

21221 
? 

Truck 2 31211 -1 2 0 0 0 

21222/ 31211 -1 7 0 0 0 

22111/ Destination 2, 31112 -1 6 0 0 0 

22112. Truck 1 31112 -1 0 0 0 

2 22211 11222, 12222 -1 6 0 0 0 

22212 ' Destination 2 11222, 12222 -1 1 14 8 

22221 J Truck 2 31212 -1 6 2 Ik 20 

22222/ 31212 -1 4 0 0 0 

31111 ) -1 3 1 5 8 

31112 
7 -»• Terminal, Truck 1 

1 0 0 
99 

31112 1 1 6 0 0 0 
99 

31211 
1 

1 3 0 0 0 

31212, 
Termianl, Truck 2 

20 26 31212, -1 6 2 20 26 
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Dl [01 

02 D2 

Total travel time = 3 + 2 + 3= 8 

Figure 7.3. Route for truck 1 

Total travel time =U+U+6+6+6=26 

Figure 7.^. Route for truck 2 
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F. Presentation of a Larger Problem 

In the previious section, we considered a small problem with 2 

origins, 2 destinations, 2 trucks and 3 loads. Let us expand the 

problem to one having 3 origins, 3 destinations, 10 trucks and 

20 loads (3 X 3 X 10 X 20). 

Let us assume that truck 1 will carry 4 loads, each of the 

trucks 7 and 10 will carry 1 load and the rest of the trucks 

will carry 2 loads each. Other relevant information has been given 

in the following data matrix. 

Table 7.12. Data matrix for the problem (3 x 3 x 10 x 20) 

°1 «2 °3 1̂ °2 D3 a. 

T 4 9 4 6 4 3 

(Time/cost matrix) 2 5 6 8 

8 3 7 6 

°3 6 8 2 6 

5 9 6 20 

The problem was run on the computer using the algorithm developed 

in section D. This problem has 303 possible operations whereas there 

are 2k operations for the (2x2x2x3) problem explained in the 

previous section. It shows that for a bigger problem, the input stream 
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becomes considerably bigger. But this involves only a few changes 

on each data card. 

To halt the sampling process, stopping rule 3 as explained in 

Chapter 3, section B, was applied. The sample size used was 20 and 

the total number of schedules generated was 60. CPU time was 

less than 2 seconds per schedule. 

Out of the 60 schedules, the total travelling time for the 

worst schedule was 307 and that for the best one was 22$. 

Stopping rule 2 might give us a better possible solution, but 

at the expense of a higher CPU time. In fact, the best schedule 

having 229 units of travelling time was obtained in the first 2 

samples of size 20. But the stopping rule criterion was not met 

until a third sample of size 20 was generated. So, for a bigger prob

lem, the sampling strategy should be to specify a smaller sample size 

and apply stopping rule 2. This may yield a better result in less CPU 

time. 

The routes for each of the 10 trucks corresponding to the schedule 

having 229 units of travelling time have been displayed in figures 

7-5 - 7.1K. 

The truck routine summary is given in Table 7.13. The information 

gives an indication of the distribution of the arrivals and departures 

by each truck at each origin and destination. Although the routes 

are not known from this table, small changes in the product availability 

or number of trucks available might permit management to construct another 

"good" solution by using the table in conjunction with the previous 

routing diagrams. 



www.manaraa.com

182 

loi ,01 D1 

.D2 02 02 D2 

Travel time = 45 

Figure 7.5. Route for truck 1 

0? 

Travel time = 2 1  

Figure 7,6- Route for truck 2 

01 D1 (o 

Oi D3 03 Di 

0 
Travel time =25 

Kip,urn 7-7. Roul.o for truck 3 
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Travel time =13 

Figure 7.8. Route for truck L 

Travel time = 21 

D3 03 D3 

Figure 7•9' Route for truck 5 

Ty Travel time = 22 

l'VW';ure 7.10. Route for truck 6 
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Travel time 

Figure 7.11. Route for truck 7 

Travel time 

Route for truck 8 Figure 7.1 

Travel time = 32 

03 D3 03 D3 

Figure 7.13. Route for truck 9 
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01 D1 

Travel time = l6 

03 D3 

Total travel time for 10 trucks = 2?9 

Figure T-l^- Route for truck 10 

Table 7.13. Truck routing summary 

Trucks °1 °3 •>1 
^3 

a 

1 3 1 1 1 2 k 

2 1 1 1 1 2 

3 1 1 2 2 

4 2 2 2 

5 1 1 1 1 2 

6 1 1 1 1 2 

7 1 1 1 

8 1 1 1 1 2 

9 2 1 1 2 

10 1 1 1 

a^=8 a^=6 

f L=2o\ 

ft..—6 
•> 

5 b^=9 b^=6 
10 
ï L =20 
K=1 ^ 

®'L* = number of loads carried by Kth truck 
K 
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G. Extension of the Transportation Algorithm 

1. Multi-terminal system 

The algorithm developed in section D is similar to the one given 

in Chapter 2. Although in sections E and F a single terminal is con

sidered for the illustration of the transportation problem, the algorithm 

can be applied without any basic modification for a multi-terminal system. 

The different terminals will be numbered as different machines of the 

same facility. 

2. Multi-product system 

This system refers to the situation where more than one type of 

product is involved. For the sake of discussion, this system can be 

further subdivided into two classes: 

(1) Each truck carries a specific product, and 

(2) A truck can carry more than one type of product. Let us 

discuss each of the above classes by specific examples. For the first 

class, let us look into a system having three origins, three destina

tions, one terminal, four trucks and two types of products A and B 

with the following limitations. 

Trucks 

1 

2 

3 

Number of loads to carry 

2(A) 

3(B) 

2(A) 

2(B) 
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Table 7.1k. Supplies and demands 

Origins/destinations Number of loads available/required 

Product A Product B 

0̂  2 1 

°2 - 2 

0. 2 2 

1 2 

°2 2 

One way to attack the problem would be to add one more integer 

to the algorithmic notation for an operation to specify the type of 

product. But this would bring operational complexities in the compu

ter logic. We, therefore, suggest the following alternative approach. 

Principle of decomposition: Let us decompose each origin and desti

nation involving more than one type of the product into two origins or 

destinations. This will give rise to a single-product system of five 

origins and five destinations as shown in Table 7.15. The system after 

decomposition is equivalent to two independent systems corresponding to 

two types of products as shown in Tables 7-16 and 7.17. The two systems 

with the specific identities to their origins, destinations and trucks 

can now be solved by a single program with the algorithm developed in 

section D. 
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Table 7.15. System after deconçositon 

Origins/destinations 

Original System after 
system decomposition 

Number of loads available/required 
(System after decomposition) 

Product A Product B 

2 
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Table 7.16. System with product A 

Origins Destinations Trucks 

1 

% "3 3 

Table 7.17. System with product B 

Origins Destinations Trucks 

"a 
2 

°3 

*5 "5 
k 

The second class is a multi-product system where trucks can carry 

more than one type of product. Some modifications are needed in the 

algorithm of section D in addition to decomposition of origins and 

destinations. 

Let us describe two independent routes of the same truck for two 

different products by the network diagrams shown in figures 7.15 and 

7.16. 



www.manaraa.com

190 

Fif̂ re 7.15. Route for product A 

FlfTuro 7.10, Route foj- yij-o'lucrt i" 
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The routes of the same truck for the two products being "independent," 

the truck can reach the terminal without delivering any or some loads 

of some product, if the algorithm is applied to the problem without 

any modification. To show this, referring to figures 7.15 and 7.16, let 

us suppose there are two loads yet to be delivered, one from 0̂  to 

and the other from 0̂  to D̂ . The truck from some destination 

may come to 0̂ , deliver the load to and go back to the terminal 

without delivering the load from 0̂  to D̂ . The algorithm does not 

provide anything to prevent this possibility. 

In order to ensure that the truck delivers all its assigned loads 

before it reaches the terminal, let us incorporate the following 

changes in steps 2 and 3 of the algorithm in section D. 

Change the title of the step 3 from "Processing the operation" to 

"Processing the operation related to origin/destination." 

Step 2 will be changed as follows: 

Check IC3 except the last group (terminal) whether there is 

any zero entry in any row. If no zero entry is found, go to step 2A. 

Otherwise, count the number of zeros and select one of the processes 

at random. IFIND is the row selected by randomization. Go to step 3. 

Step 2A. Processing the operation related to terminal; Count 

the number of operations having a zero in IC3 in the last group. Let 

these operations be in set 5. Select one of the operations at random 

from 5 and call it IFIND. In 5, check the operations correspond

ing to the same job as IFIND (having first 3 dibits in common). Let 

these operations including IFIND be in a subset w. From among the 

operations in w, process the one having the maximum starting time (Cg). 
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Put this value in IC6. To this value, add the entry in ICU and put 

it in IC7. Make MAXM = MAXM + 1 and put it in 1C5. Turn the switches 

from 0 to -1 in IC3 for the operations in w. If there is no 

zero entry in IC3 (last group), go to step 6; otherwise, repeat this 

step. 

3. More than one .lob in a machine 

The transportation algorithm developed in section D can also be 

applied with some modifications for a production scheduling in which 

more than one job can be processed simultaneously in a single machine. 

Heat treating ovens, chemical treatment tanks, and the like are some 

of the examples in which usually more than one job is processed simul

taneously. Another example is "Ironworker" which is a general-purpose 

tool that punches, notches, and cuts. Here men can work on two jobs 

simultaneously. This general service area has a number of such 

"utility" tools that can be run by any worker who needs them. It may 

be desirable to have this type of general purpose machine in the inter

mittent industry which deals with many different types of products. 
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VIII. SUMMARY 

A. Summary and Conclusions 

An algorithm was developed to generate feasible schedules for 

a multi-machines multiple facilities system. The algorithm was 

further improved by the concept of left-shifting to provide a 

better subset of the feasible solutions. In all the sample problems 

tested, the superiority of the left-shifting techniques over the 

pure random (non-shifting) procedure was verified with respect to 

minimum schedule time and different parameters of its distribution. 

It must be emphasized that two factors pose potential severe limi

tations on the utility of Monte Carlo method for solving sequencing 

problem: the efficiency of the algorithm and rules for halting the 

sampling processes. Besides the left-shifting procedure, different 

biasing techniques were explored to improve the efficiency of the 

random samplings Some of the biasinp, technqiues Introduced in this 

dissertation have been found even more powerful than the left-shifting 

procedure. However, the improvement by those biasing techniques over 

the left-shifting solutions is almost always accompanied by a con

siderable increase in CPU time/schedule. Total CPU time asso

ciated with any biasing technique could be reduced by specifying a 

smaller sample size in the algorithm without affecting the result 

considerably. It was, therefore, suggested that depending on the 

approximate minimum schedule time and CPU time, the scheduler can 

apply the left-shifting principle, combination technqiues or biasing 

techniques with smaller sample size. 
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With regard to the rules for halting sampling processes, several 

distribution-free stopping rules have been suggested in this disserta

tion. The stopping rule functions were converging in nature; and, as 

such, the scheduler has some justification to believe that the schedule 

obtained at the time of stopping should be close enough to the best 

obtainable schedule by this algorithm. From our experience, the 

different stopping rules need different number of schedules before the 

sampling process stops. Therefore, a rough guideline was suggested 

regarding the sajiçle size to be specified for different stopping rules 

and different solution techniques. To determine an approximation to 

the best obtainable schedule, a minimum bound value for the schedule 

time was estimated by using a three-parameter Weibull distribution 

which permits the calculation of the probability of further improve

ment in the solution at any instant. 

In a practical situation, the scheduler may be interested in 

performing some operations on a particular machine of a facility. 

For example, the last finishing operation should be done on the machine 

which can maintain required precision. Also, the technological orders 

of different jobs may not be independent of other jobs in the sense 

that a particular operation on a commodity may need the completion of 

an operation of another commodity. We come across this situation in 

an assembly operation. The proposed algorithm can be applied in the 

above cases without any basic modifications. 

The algorithm for the multi-machines multiple-facilities system 

was further modified to be applied to a special type of transportation 

problem. This modified version could be equivalently applied 
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in a job shop situation where more than one job can be simultaneously 

processed on the same machine. 

B. Recommendations 

The decision criterion used in this dissertation as a measure of 

performance is minimizing make-span time. In the current literature 

the emphasis has been on this measure of performance and it is argued 

that all other measures such as minimizing the in-process inventory, 

minimizing the costs of the machines or minimizing penalty costs of 

the jobs (if they are delivered later than the promised due date), are 

directly or indirectly related to this function. In defense of this 

measure, Manne (196O) states: 

The economist, conditioned as he is to take a dim view of any 
minimum and other than dollar costs, will find it difficult 
to be altogether happy with Johnson's criterion, the minimi
zation of t, the make-span. In defending this choice of 
minimand, however, it should be pointed out that t is likely 
to be correlated with dollar costs. In minimizing t we may 
conceivably also obtain the following cost and profit benefits : 
(a) a lowered amount of inventory ties up in work-in-process, 
(b) a shorter average customer delay time, and (c) a lower amount 
of idle time incurred prior to the performance of all currently 
booked jobs—i.e., a greater capacity to take additional work 
as new orders materialize. To the extent that all of these 
factors work in the reasonable proxy variable for economic cost. 
The job sequence that serves to minimize the make-span might 
also be one that scores quite well on the criterion of dollar 
costs. 

It may be noted that Manne states that one may conceivably also 

obtain benefits other than minimizing the maximum flow time "to the 

extent that other factors were in the same direction." The question "Do 

the factors work in the same direction or not and even if they work in 

the same direction, what happens if their rates of change are 
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different" becomes pertinent. "No mathematical or empirical study 

has appeared in literature indicating the validity of Manne's state

ment. Beenhàkker's (1963) only attempt in this direction fails to 

give any conclusion because in proving the equivalence of various 

criteria, he essentially considers time as a measure of performance 

instead of costs" (Gupta, 1971). In the absence of any mathematical 

ajialysis, Gupta (1971) considered a hypothetical example and showed 

that Manne's argument doesn't hold in general. 

In the future research work, the inclusion of other criteria 

should be considered. In a job shop, all jobs are not of equal value. 

Every time a job is processed in a machine its value is increased. The 

different jobs have different due dates. For each job, we can 

assign different priority indices, considering the above factors 

separately or on the basis of a linear combination of those factors. 

In the process of sampling, jobs should be selected according to higher 

priority indices. There has been a reasonable amount of discussion 

in the literature on the selection of a decision criterion for schedul

ing problems. Quite recently multiple decision criterion (such as 

goal programming) has been investigated. Therefore, it is suggested 

that use of multiple decision technique be considered for scheduling 

problems such as those discussed in this dissertaiton. 

Further biasing techniques should be developed in order to 

provide better schedules. In this regard, multiple left-shifting 

principle and other techniques mentioned in Chapter 5 may be explored. 
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As regards to the transportation algorithm, besides the different 

possible extensions proposed and discussed in Chapter T, section G, it 

is expected that the algorithm may be improved with respect to computer 

time by the following alteration. 

Referring to the algorithm developed in Chapter 7, section D, 

during the solution procedure, many times we know that some origins 

and destinations are already "blocked" (step U). Even then, in 

searching for zeroes and selecting one of them from ICS (step 2), 

the algorithm does not exclude those origins and destinations. In the 

Monte Carlo procedure, we generate many schedules and select the one 

with the minimum total time. So, especially for a larger problem, a 

considerable amount of CPU time is expended in executing step 2 

for the entire run. The following change in the algorithm will possibly 

reduce this time to a great extent. 

i) For the terminal, make the entry in CLO equal to the number 

of trucks. 

ii) Change steps 2 and 4 of the algorithm in Section D as 

follows : 

In step 2, check CLO whether there is any positive entry. If 

no positive entry is found, it implies that a feasible route has been 

obtained for each truck and step 6 follows. Otherwise, count the number 

of zeroes in IC3 corresponding to the machines having positive 

entries in CLO and select one of the processes at random. IFIND is 

the row selected by randomization. 

In step 4, multiply the entry only in CLO by -1 correspond

ing to the machine. Leave the other switches in IC3 as they are. 



www.manaraa.com

198 

IX. BIBLIOGRAPHY 

Akers, S. B. snd Friedman, J. (1955)» "A Non-Numerical Approach to 
Production Scheduling Problems", Operations Research, 2» ^57. 

Ashour,S. (1967), "A Decomposition Approach for the Machine Scheduling 
Problem", International Journal of Production Research, 109. 

Ashour, S. (1970), "A Branch-and-Bound Algorithm for Flow Shop 
Scheduling Problems", AIIE Transactions, 172. 

Ashour, S. and Parker, R. G. (l97l), "A Precedence Graph Algorithm for 
the Shop Scheduling Problem", Operational Research Quarterly, 22, 165. 

Ashour, S. and Quraishi, N. (1969), "Investigation of Various Bounding 
Procedures for Production Scheduling Problems", International Journal 
of Production Research, %, 2^9. 

Bae, H. M. (1972), "A Heuristic Solution to the General Job Shop 
Scheduling Problem", M. S. Thesis, Iowa State University of Science and 
Technology, Ames, Iowa. 

Balas, E. (196?), "Discrete Programming by Filler Method", Operations 
Research, 15. 915• 

Balas, E. (1969), "The Machine Sequencing via Disjunctive Graphs: 
An Implicit Enumeration Algorithm", Operations Research, IT, 9^1. 

Beenhakker, H. L. (1963), "The Development of Alternative Criteria 
for Optimality in the Machine Sequencing Problems". Unpublished 
Ph.D. Thesis, Purdue University, West Lafayette, Indiana. 

Bellman, R. (1956), "Mathematical Programming of Scheduling Theory", 
SIAM Journal on Applied Mathematics, 168. 

Bellman, R. (1962), "Dynamic Programming Treatment of the Travelling 
Sales Problem", Journal of Association for Computing Machinery, £, 61. 

Bellman, R. and Malone, J. C. (1971), "Pathology of Travelling 
Salesman Subtour-Elimination Algorithms", Operations Research, 19, 778. 

Bowman, E. H. (1959), "Schedule Sequencing Problems", Operations 
Research, %, 621. 

Brooks, G. H. and White, C. R. (1965), "An Algorithm for Finding Optimal 
or Near Optimal Solutions to the Production Scheduling Problem", 
Journal of Industrial Engineering, 16, 34. 

Brooks, Samual H. (1958), "A Discussion of Random Methods for Seeking 
naxima'% Operations Research. 244. 



www.manaraa.com

199 

Brown, A. P. G. and Lomnicki, Z. A. (1966), "Some Applications of 
the Branch-and-Bound Algorithm to Machine Scheduling Problems", 
Operational Research Quarterly, 17, 173. 

Charlton, J. M. and Death, C. C. (l9T0a), "A Generalized Machine-
Scheduling Algorithm", Operational Research Quarterly, 21, 127• 

Charlton, J. M. and Death, C. C. (1970b) ,"A Method of Solution for 
General Machine-Scheduling Problems", Operations Research, I8, 689. 

Conway, R. W., Maxwell, W. L. and Miller, L. W. (1967), Theory of 
Scheduling, Addison-Wesley, Reading, Mass. 

Elmaghraby, S. E. (1968a), "The Machine Sequencing Problem—Review 
and Extension", Naval Research Logistic Quarterly, 15, 205. 

Elmaghraby, S. E. (1968b), "The One Machine Sequencing Jobs with Delay 
Costs", Journal of Industrial Engineering, 2, 105. 

Elmaghraby, S. E. and Cole, R. T. (1963), "On the Control of Production 
in Small Job Shops", Journal of Industrial Engineering, iH, 

Epstein, B. (196O), "Elements of the Theory of Extreme Values", 
Technometrics, 2_, 27. 

Fisher, H. and Thompson, G. L. (1963), in Industrial Scheduling, 
Muth, J. F. and Thompson, G. L., Eds., Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, Chapter 15. 

Gere, W. S. (1966), "Heuristics in Job Shop Scheduling", Management 
Science, 13, 167« 

Giffier, B. and Thompson, G. L. (1960), "Algorithms for Solving Produc
tion Scheduling Problems", Operations Research, 8^, 487. 

Giffier, B., Thompson, G. L. and Van Ness, V. (1963), in Industrial 
Scheduling, Muth, J. F. and Thompson, G. L., Eds., Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey, Chapter 3. 

Gillett, B. E. (1976), Introduction to Operations Research—A Computer-
Oriented Algorithmic Approach, McGraw-Hill Book Company, New York. 

Greenberg, H. H. (1968), "A Branch-and-Bound Solution to the General 
Scheduling Problems", Operations Research, 16, 353. 

Gumbel, E. J. (1954), Statistical Theory of Extreme Values and Some 
Practical Applications, National Bureau of Standards Applied Mathe
matics Series 33. 

Gumbel, lî. J. (1953), Statistics of Extremes, Columbia University, 
New York, N. Y. 



www.manaraa.com

200 

Gupta, J. N. D. (1970), "It-Stage Flow Shop Scheduling by Branch and 

Bound", Operations Research (India) 1_, 37. 

Gupta, J. M. D. (1971), "M-Stage Scheduling Problem—A Critical 
Approach", International Journal of Production Research, T, 2k9. 

Hardgrave, W. W. and Neitihauser, G. L. (1963), "A Geometric Model and a 
Graphical Algorithm for a Sequencing Problem", Operations Research, 11, 

889. 

Heller, J. (I960), "Some Numerical Experiments for an MXJ Flow Shop 
and Its Decision Theoretic Aspects", Operations Research, 8_, I78. 

Heller, J. and Logemann, G. (1962), "An Algorithm for the Construction 
and Evaluation of Feasible Schedules", Management Science, 8^, 168. 

Ignal, E. and Schraze, L. (1965), "Application of the Branch-and-
Bound Technique to Some Flow Shop Scheduling Problems", Operations 
Research, 13, 400. 

Jackson, J. R. (1956), "An Extension of Johnson's Results on Job Lot 
Scheduling", Naval Research Logistics Quarterly, 3.» • 

Jackson., J. R. (1957), "Simulation Research on Job Shop Production", 
Naval Research Logistic Quarterly, 287. 

Johnson, S. M. (1954), "Optimal Two-and-Three Stage Production Schedules 
with Setup Time Included", Naval Research Logistic Quarterly, 1, 6I, 

Kammin.; Tnmra J. (1976), "Optimizing Truck Routes", Unpublished M. 8. 
Research Paper, Department of Mathematics, Iowa State University, Ames, 
Iowa. 

Little, J., Murry, K., Sweeney, D., and Karnel, C. (I963), "An 
Algorithm for the Travelling Salesman Problem", Operations Research, 

11, 972. 

Lomnicki, Z. A. (I965), "A Branch-and-Bound Algorithm for the Exact 
Solution of the Three-Machine Scheduling Problem", Operational Re
search Quarterly, 16, 89* 

Manne, A. S. (1960), "On the Job-Shop Scheduling Problem", Operations 
Research, 8, 219-

McRoberts, K. L. (1966), "Optimization oT Facility Layout", Ph. D. 
Thesis, Iowa Ktate University of Science and Technology, Ames, Iowa. 

McRoberts, K. L. (1971), "A Search Model for Evaluating Combinatorially 
Explosive Problems", Operations Research, 1331. 



www.manaraa.com

201 

Nabeshima, I. (1967a), "Some Extensions of the M-machine Scheduling 
Problem", Journal of Operations Research Society, Japan, 10, 1. 

Nabeshima, I. (1967b), "On the Bounds of Make-spans and Its Applica
tion in M-machine Scheduling Problems", Journal of Operations Research 
Society, Japan, £, 98. 

Randolph, P. H. (I968), "Optimal Stopping Rules for Multinomial 
Observations", International Journal for Theoretical and Applied 
Statistics, 

Randolph, P. II., Swinson, G. and Ellingsen, C. (1973), "Stopping Rules 
for Sequencing Problems", Operations Research, 21, 1309-

Reiter, S. and Sherman, G. (1965), "Discrete Optimization", Journal of 
the Society for Industrial and Applied Mathematics, 13. 86Û. 

Rowe, A. J. (1960), "Toward a Theory of Scheduling", Journal of 
Industrial EnRineering, 11, 125. 

Schrage, L. ( 1970), "Solving Resource Constrained Network Problems by 
Implicit Enumeration—Non Preemptive Case", Operations Research, I8, 
263. 

Schwartz, E. S. (196b), "A Heuristic Procedure for Parallel Sequencing 
with Choice of Machines", Management Science, 10, 767. 

Smith, Wayne E. (1956), "Various Optimizers for Single-Stage Pro
duction" , Naval Research Logistics Quarterly, 3_, 59. 

Story, A. E. and Wagner, H. II. (1963), in "Industrial Scheduling", 
Huth, J. E. and Thompson, C, L. Eds., Prentice-Hall, Inc., Englewood 
Cliffs, U.J. Chapter 14. 

Thompson, 0. L. and Karg, R. L. (i.96H), "A Heuristic Approach to 
Solving Travelling-Salesman Problems", Management Science, 10, 225, 

Wagner, 11. M. (1959)» "An Integer Linear Programming Model for 
Machine Scheduling", Naval Research Logistic Quarterly, 6, 131. 



www.manaraa.com

202 

X. ACKNOWLEDGEMENTS 

A number of individuals deserve my appreciation in this research 

effort. 

I wish to thank, without reservation, ray major professors. Dr. 

Keith L. McRoberts and Dr. Howard Meeks, for their assistance, 

patience, willingness, and valuable guidance and support in the prepa

ration of this dissertation. 

Hpecial thanks are also due to Dr. V. A. Sposito for many 

valuable discussions, research ideas and help in the development of 

all the computer programming for this research study, which greatly 

facilitated early completion of my work. 

I would also like to thank Dr. John C. Even and Dr. B. V. 

Sukhatme for serving on my committee. 

I would like to thank Bangladesh University of Engineering and 

Technology for providing me the scholarship and deputation during 

my graduate study at Iowa State University. 

I should sincerely mention the help of my dear friend, Abdurrazzagh 

Ennagiar, in making different figures and sketches for my dissertation. 

Three individuals who deserve special thanks for their inspiration and 

encouragement in different phases of my graduate study are Dr. John 

Trzeciak, Mufazzal Chowdhury and Yeakup Busmaci. 

Last but not least, I want to express my deepest appreciation to 

all my friends and relatives for their good wishes and especially to 

my wife Monowara for her love and understanding and my children, Zakia, 

Mahboob and Syeda for their patience during my three years' absence 

from them. 



www.manaraa.com

203 

XI. APPENDIX I. LEFT-SHIFTING ALGORITHM 

COMMON ICl(500«4),IC2(500i4,15>, 10 3(500) ,IC4(500)» IC5(50 0) 
COMMON IC6(500)tIC7(500) .IND(500 )tISAVF(500.3),ICS3(500) 
DIMENSION IOT(1500) 
on 1 1=1,500 
IC3( I )=0 
IC4(I)=0 
IC5(I)=0 
IC6(I)=0 
IC7(I)=0 
ICS3(I)=0 

1 INO(I)=0 
no 3 1=1,500 
DO 3 J=l,4 

3 I C 1 ( I , J ) =0 
nn 4 1=1,500 
on 4 J=1,4 
D-1 4 K=1 ,15 

4 IC2(I,J,K)=0 
DO «8 1=1,1500 
IOT(T)=0 

PEAD 
IN 
SCH. INFORMATION 

PEAC(5,5) NN,NN2,IX,IG 
5 F1PMAT(?0I4) 

DO no 1=1,NN 
80 QTAD(5,11) IND(I) 
11 FORMAT(12) 

JL=0 
DO 6 1=1 ,NN 
CEA0(5,n)(ICS3(J),J=1,5?) 
m <30 j=1,4 

OO ICMI, J)=IC53( J) 
J=1 
J J=4 
on 91 K=!,15 
J = J+4 
JJ=JJ+4 
JL = 0 

DC 91 JK=J,JJ 
JL = JL+ 1 

91 IC2(I,JL,K)=ICS3(JK) 
6 CONTINUF 
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Q FOPVAT(• • •20 Tl ) 
Q FOPMAT(13( I2T I I, I2TI 1 ») 

WPITF(6,12) 
12 FORMAT('1') 

OO 7 1=1 ,NN 
7 PFAD(5T687) IC3( ! ) . IC4(I) 

697 FOHMAT(I1,12) 
no 24 1=1.NN 

24 ICS3(I)=IC3(I) 
C 
r NOW TO 
C FIND AN 

r OPTIWAL 
C SCHED. 
C 

NPP=0 
MXX=100000 
IFF=0 
MVX=0 
NMN=-I 
NPP0B=0 
LX = 1 
LLX=NN 

505 CONTINUF 
NPccg=NPpn8+i 
NMN=NMN+1 

'500 CONTINUE: 
IF(NMN.F0.NN2) GO TO 1000 

1010 CONTINUE 
IFINr=0 
CALL n 6 Nnu(ix,iY,xx; 
IX=TY 
NX=XX*NN+.90999 
IF(NX.GF.NN) NX=NN 
IF(NX.LF.O) NX=1 
DO 15 1=1.NN 
IF( IC3( I ),cQ»0) GO TO 16 

15 CONTINUf 
r 

C BPANCM OUT IF 
C C3 HAS 
C NO ZFROS 
c 

GO TO 100 
1 f, no 17 I =NX,NN 

IF ( IC3( I ).F(i.O) IFINn=l 
!F( !C3( I ).FQ.O) GC TO l"? 

1 CONTINUF 
DO 19 1=1.NX 
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IF( IC3(I l.'^Q.O) IFlNri = I 
IF( IC3( n.EQ.O) GO TD 18 

13 CONTINUF 
19 CONTINUF 

C A PROCESS 
C HAS BEEN 
C SELFCTED 

IC3( IFIND =-l 
MAX=0 
IU=IC1(IFIND,4) 
IWNU=IC1(IFIND»! ) 
IjaB=ICl(IFIN0.3) 

fFifci/r.'l'r-U. I M N U . A N O . I C H I . J l . r Q . I J -.B.ANO.IU.tQ.ICl 

1(1,4)) 
XIC3( I ) =- 1 
IF(ICI(I,3) .NF.IJCB ) GO TP 20 
IF(IC7(I).GC.MAX) MAX=IC7(I) 

20 CONTINUE 

C TO SELFCT 
C AT RANDOM THF 
C N^XT OROC^SS 
C 

CALL TIMFLGCIFIND,NN,MAX) 
IF(IC2(IFIND,3,1).FQ.O) GO TO 30 
NC=TNO(IFIND) 
CALL RANDU(IX,IY,XX) 
IX = !V 
XXX=XX*NCf.99990 
ISFL=XXX 
IP< ISFL.LT. 1 ) ISFL=1 
IF(ISFL.GT.NC) ISEL=NC 
00 21 L=ISFL,ISFL 
I=IFIN0 
Nl=IC2(I.1,L) 
N2=IC?(I,2,L> 
N3=IC2(I,3,L) 
N4=IC2(I,4,L) 
no 22 J=1,NN 
IF(I.EG.J) GO rn 27 

IFCNUNF.IC 1 ( J, 1) ) GC TO 22 
IF(Nl.F0.ICl(J,l).AND.N?.Fr).ICl(J,2) . AND . N3 . FO. I C1 

1(J,3).AND.N4, 
XEO. ICI ( J,4) ) IC^fJ )=0 

22 CONTINUF 
21 CONTINUF 
30 CONTINUF 

501 GO TO 50 0 
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100 CONTINUF 
M4X=0 
00 60 1=1,NN 
IF(IC7(I).GP.M4X) MAX=IC7(I) 

60 CONTINUF 
IOT(NPRDB)=MAX 
J =0 
IF<VAX.GT.MYX) MYX=MAX 
IF(MAX.GT.yxX) GO TO 600 
00 35 1=1,NN 

35 WRITF(6.40) IC3(I),IC5(I),IC6(I).IC7(I) 
40 POPMAT(• • ,4( I5,?X) ) 

WOITP(6,12) 
NPP=NPR0P 
MXX=MAX 
on 61 I=LX $LLX 
J = J + 1 
1 SAVE( I , 1 ) =IC5( J ) 
1SAVE(I,2)=IC6(J) 

61 ISAVF(I,3)=IC7(J) 
600 CONTINUF 

no 62 1=1,NN 
IC5(T)=0 
IC6{ I ) =0 
IC7( I)=0 

62 IC3(I)=ICS3{I ) 
GO TO 505 

1000 CONTINUE 
CALL STOPJ(WXX,MYX,NProB,IDT,ISX,IFF) 
IF(TSX.EO.l) GO TO 1005 
NMN=0 
GO TO 1010 

1005 CONTINUF 
WRTTE(6,1002) MXX 

1002 «^nt^VATC 1* , 14) 
602 F0RMAT(3I5) 

00 6012 I=l,NPonR 
WPITF(6,6G13) IDT(I) 

6012 CONTINUF 
6013 FORMAT(• •,15) 

STOP 
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SUBROUTINF STOPJ (MXX .MY X , NPP 0F3 t I PT , IS X , I FF ) 
OIMFNSION IPTC1500) 
I sx=o 
IPF=IFF+1 
IF( IFF.NE.1) GO TO 10 
LX1=MYX-MXX 
RFTUPN 

10 LL2=MYX-MXX 
W0ITE(6.6) NPROB.MXX.MYX.LXl»LL2,LINV 

6 FOPMATC •,6<2X»I5)) 
LINV=LL?-LX1 
IFCLINV.L-r . 1 ) GO TO 20 
LXI=LL2 
IFTURN 

20 CONTINUF 
I SX = 1 
L = 1 
jj=Nppoe+i 
DO 30 I=L.NPROB 
IJ=I+l 
DO 40 J=IJ»JJ 
IF( IPTd ).GP.IPT( J) ) GO TO 40 
IS=IPT(J) 
IPT(J)=IPT(I) 
IPTd )=IS 

40 CONTINUF 
L=L + 1 

30 CONTINUF 
RETURN 
END 
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SUBROUTINE TrMELC.dFINDtNNtMAX ) 
COMMON ICl(50 0.4),ir2(500t4,I5),IC3C500),IC4(500),IC5(500) 
COMMON IC6(500) , IC-^(500) , INn(50r ) , ISAVr (500 . 3 ) . ICS 3 ( 5C 0 ) 
IS=ICl(IFIND.1) 
ISS=ICl(IFIND.2) 
DO 1 1=1 .NN 
L=I 
IF( IS.EO. ICK I . 1 ) .AND.ISS.FO.ICl (1.2)) GO TO 2 

1 CONTINUF 
2 DO 1 I=L«NN 

LL=I 
IF( IS.FQ. ICK I , 1 ) .AND.ISS.FO. ICI ( I ,2) ) GO TO 3 
LL=LL-1 
GO TO 4 

1 CDNTINUr 
IF(IS.EQ.ICI(NN.1).AND.ISS.cO.IC1(NN.2)) LL=NN 

4 TMAX=0 
L5=0 
no 5 I =L,LL 
IF(IC5(I).LE.IMAX) GO TO 5 
L5 = I 
IMAX=IC5(I) 

5 CONTINUF 
IF(L5.eQ.O) MAX5=0 
inuT=o 
CALL R^CHK { nUT.L.LL. IFIND. I ̂ AX. NN.MJM) 
MAX=MJM 
IF(LOUT.FQ.1) P=TUPN 
I'=(L5.»;0.0 ) GO Tn 6 
WAX5=!C?(L5) 
ÎF( IMAX.NF.O) GO TO 6 
IC5( IFIND =1 
IC7(IFIND)=IC4(IFINO) 
GO TT 10 

6 IC5(IFIND)=IMAX+1 
IF(MAX.GF»MAX5) GO TO o 
I C7( IFIND =MAX5 +IC4( IFIND) 
ÎC6(IFINO)=MAX5 
Pt^TUPN 

9 IC6( IFIND =MAX 
IC7(IFIND)=WAX+IC4(IFIND) 

10 CONTINUF 
W|^X = 0 
DO 11 1=1.NN 

11 IF( IC7(I).GF.MAX ) MAX=IC7(I) 
PÇTUPN 
FND 
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SUBPOUTINF RECHK(nuT.L,LL. IFINO. IMAX.NN.MJM ) 
COYMON ICI(500T4),IC2(500,4, 15). 1C3(500) •104(500).IC5(500) 
COMMON IC6 (500) . IC-'( 500) . I ND (500 ) , IS AVE ( 500 . 3 ) . ICS 3 ( 50 0) 
IOUT=0 
ISS = 0 
INTV=IC4(IFIND) 
M JM=0 
DO 41 K=1.NN 
IFdCKK,3),NE. ICI (IFIND,3) ) GO TO 41 
IF(IC7(K).GE.MJM) MJM=IC7(K) 

41 CONTINUE 
MAXM=IMAX 
IF(MJM.FQ.O.AN3.MAXM.FO.O) GO TO 2000 
IF(MAXM.EO.O) GO TO 1001 
no 50 K=1.MAXM 
DO 50 I=L,LL 
!F( IC5(I).NF.K) GO TO 50 
ITIME=IC7(I) 
I Z = T 
L2=L 
IF(MJM,GT.ITIM'=;) GO TO 50 
11=1 
IAVA=IC6(I) 
IF( IAVA.LE.MJM) MJM=ITIM«I 
IF(MJM.GE.lAVA) GO TO 50 
IAAA=IAVA-MJM 
IF( INTV.GT. lAAA. AND.K,r=.0.1 ) MJM= ITTMF 
IF(INTV.GT.IAAA.AND.K.FO.l) GO TT 50 
IF(!AVA.GT.0.AND.1C5(I).EO.l .AND.INTV.LF. lAAA) GH TO 500 
ÎF(I55.FQ.Î) GO TO ôOOO 
I5S = 1 
IF( INTV.LE. lAA/» ) GO TO 500 

6000 CONTINUE 
KK=K+1 
IF( KK.GT.MAXM) GC "^0 50 
on 5? IL=L,LL 
IF( IC5( ID .NF.KK ) GO TO 52 
ic(INTV.LE.lAVA) MJM=ITIMF 
IAVA=IC6(IL)-ITIMP 
IZ=ÏL 
IP(INTV.LF.IAVA) G1 TO SCO 

52 CONTINUF 
GO TO 50 

50 3 IAM=I7 
IXX=IC5(IZ) 
DO 60 KK=L.LL 
IF(IC5(KK).LT.IXX) GO TO 60 
IC5<KK)=IC5(KK)+1 
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60 CONTINUE 
I A Mr. IF I ND 
IC5(ÎAM)=IXX 
IF( I XX.NE.1 ) GO TO 70 
IC7(IAM)=INTV+MJM 
rC6(IAM>=0+MJM 
I0UT=1 
RcTUPN 

70 CONTINUF 
IC6(lAM)=MJM 
IC7(IAM>=MJV +IC4(IFIN0> 
I0UT=1 
GO TC 1001 

eO CONTINUF 
50 CONTINUF 
1001 RETUFN 

2000 IC5( IFIIMD) =1 
ÎC6(IFIND)=0 
IC7(IFIN0)=IC4(IFIND) 
I0UT=1 
PPTUPN 

PND 
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XTI. ATPENDIX II. TRUCK ROUTING ALGORITHM 

COMMON ICl<500.4).IC2(500.4,15).IC3(500),IC4(500).IC5 

1(500) 
COMMON IC6(500).IC7(500) ,IND(500)tISAVF(500 t3),ICS3(500) 
COMMON lOX(25)tIMX(25) 
DIWFNSIDN IDTdSOO) 
00 I 1=1.500 
IC3<I)=0 
IC4(I)=0 
IC5( n=o 
IC6(I)=0 
IC7(I)=0 
ICS3( I )=0 

1 INP(I)=0 
DO 3 1=1 ,500 
DO 3 J=1t4 

3 ICI(I,J)=0 
DO 4 1=1,500 
DO 4 J=l,4 
DO 4 K=1,15 

4 IC2(I.J,K)=0 
DO 88 1=1,1500 

88 IDT(I)=0 
C 
C PEAO 
C IN 
C SCH. INFORMATION 
C 

kFAD(5,97} In X 
PEA0(5,97) IMX 

9? F0PMAT(25I3) 
REAC(5,5) NN,NN2,IX,IG 

5 F0RMAT(20I4) 
DO 80 1=1,NN 

80 PEAC(5,11) IND(I) 
II F0RMAT(I2) 

JL = 0 
DO 6 1=1,NN 
OFAD(5,e)(ICS3(J) ,J = 1 ,52) 

a FQBMAT(13(2Î1 ,12, 12) ) 
DO 90 J=1,4 

90 1CUI»J)=ICS3< J) 
J = 1 
JJ = 4 
DO 91 K=l,15 
J = J + 4 
JJ=JJ+4 
JL=0 

DO 91 JK=J,JJ 
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JL = JL+1 
91 IC2(I f JL#K) =1CS3( JK> 
6 CONTINUF 
1 FORMAT(• • ,20 11 ) 

WPlTE(6t12) 
12 FORMAT(*1») 

00 7 I=1,NN 
RFAC(5f687) IC3(I).IC4(I) 

6P7 FORMAT(11,12) 
00 24 1=1,NN 

24 ICS3( I ) = IC3( I ) 
C 
C NOW TO 
C FI NO AN 
: OPTIMAL 
C SCHEP# 
C 

NPP=0 

MXX=100000 
IFF=0 
MVX=0 
NMN=-1 

NPROB=0 
LX = 1 
LLX=NN 

505 CONTINUF 
NPR0R=NPR0B+1 
NMN=NMN4-1 

500 CONTINUF 
IF(NMN.F0.NN2) GG TO 1000 

1010 CONTINUF 
IF INO = 0 
CALL PANDU(IX,IY,XX) 
TX = 1Y 
NX=XX*NN+.9P9Qg 
IF(NX.GE.NN) NX=NN 
IF(NX.LF.O) NX=1 
DO 15 1=1,NN 
IF(IC3(I).TO.O) GO TO 16 

15 CONTINUF 
C 
C BRANCH OUT IF 
C C3 HAS 
C NC ZFPIS 
C 

GO TO 100 
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16 DO 17 I=NX,NN 
IF(IC3(I).PO.O) IFIND=I 
IF(IC3(I).EQ.O) GO TO 18 

17 CONTINUE 
DO IQ 1=1.NX 
IF( IC3( I NEO.OI IFINO = I 
IF(IC3(I»«EO.O> GC TO IP 

19 CONTINUE 

IB CONTINUr 
C A PROCESS 
C HAS BEPN 
C SELECTED 

ICK IFIND>=-1 
MAX=0 
IU=IC1(IFIND,4) 
IMNU=IC1CIFIND.1) 
IJ0B = IC1(I FIND,3) 
DO 20 1=1,NN 
ic(ICI(I,1).EQ.IMNU.AND.IC1<1,3).FQ•IJOB•AND•IU«EG•ICI 

XIC3{I)=-1 
IFdCK I ,3» .NE.IJOB) GO TO 20 

1 'I,4) ) 
IF( IC7( I ).GE.MAX) MAX = IC7(n 

20 CONTINUE 
C 
C TO SF.LFCT 
C AT RANDOM THF 
C NHXT PROCESS 
C 

CALL TIMELG(IFIND,NN,WAX) 
Ir(IC2\I FTND.3.ÎÎ«FQ»0Î GO TO 30 
NC=INO(IPIND) 
LS = 1 
I VV=1 
DO 21 LP=1,IG 

21 IF(IDX(LE).LT.IFIND) IVV=IVV+1 
ICH=IMX(IVV) 
IF(IVV.EO.l) GO TO 4Q7 
LS=IDX(IVV-1)+1 

407 LSS=IDX(IVV) 
DO 4Q4 LB=LS,LSS 
IF(IC5(LB)eEOsICH) GOTO 395 

494 CONTINUE 
GO TO 300 

395 CONTINUE 
DO 396 L=3=LS.LS? 

396 ICl(LB)=-l 
IMX(IVV)=-1*ICH 

300 CONTINU»" 
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on 22 IKK=1,NC 
I=IFINO 
I VV=1 
Nl=IC2(I«1.IKK) 
M2=IC2( T .2.IKK) 
N3=IC2(I.3.IKK) 
N4=IC2(I,4,IKK) 
no 22 J=1.NN 
IF(I.EQ.J) GC TO 22 
IF(N1.NE«IC1(J.1)) GO TO 22 
IF(N4.NR.IC1(J,4)) GO TO 22 
IF(N2.NF.ICI(J.2).nR.N3.NF,ICl(J,3)) GO TO 22 
DO 23 INK=1,IG 

21 IF(IDX(INK).LT.J ) IVV = IVV+1 
IF(IMX(IVV>.LF.O) GO TO 22 
IC3(J)=0 

22 CONTINUE 
30 CONTINUF 

501 GO TO 50 0 
100 CONTINUE 

v|AX=0 
n o  6 0  1 = 1 , N N  

IF(IC7(I).GE.MAX) MAX=IC7(I) 
60 CONTINUE 

MAX=0 
IGl=IG-I 
IJ4=I0X(IGl> 
DO 327 I=IJ4.NN 

327 MAX=MAX+IC7( I ) 
TnTfNDOPR)=MAX 

J —0 
IF(MAX«GT.MVX ) MYX = MAX 
IF(MAX.GT.MKX) GO TO 600 
00 35 1=1,NN 

35 WOITE(6,40) IC3( I ),IC5(I),IC6(I),1C7I I) 
40 FORMAT(* ',5(15,2X)) 

WRITF(6,12) 
NPP=NPROe 
WXX=MAX 
00 61 I=LX,LLX 
J = J+1 
ISAVE( I , 1 )=IC5(J ) 
ISAve<I,2)=IC6(J) 

61 ISAVP(I ,3)=IC7(J) 
600 CONTINUF 

00 62 1=1,NN 
IC5(I)=0 
IC6(I)=0 



www.manaraa.com

215 

IC7(I)=0 
62 IC3(I)=ICS3(I) 

I=1G-1 
DO 875 JW=ltI 

87 5 IMX(JW)=-1*IMX(JW) 
GO TO 505 

1000 CONTINUF 
CALL ST0PJ(MXX»MYX#NPP0B,IDT « ISX,I FF) 
IF( ISX.EO.1) GO TO 1005 
NMN = 0 
GO TO 1010 

1005 CONTINUF 
WPITE(6.1002) MXX 

1002 FORMAT!•1* , 14) 
602 F0RMAT(3I5) 

DO 6012 I=1,NPR0B 
WRITÊ(6.6013» IDT(I) 

60 12 CONTINUF 
6013 FORMATC «,15) 

STOP 
END 
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SUBROUTINE STOPJ(MXX.MYXtNPRCP.IPTtlSXtIFF) 
DIMENSION IPT(1500> 
ISX=0 
IFF=IFF+1 
1F( IFF.NE.I) GO TO 10 
LXI=MYX-MXX 
RETURN 

10 LL2=MYX-MXX 
WRITF(6.6) NPROR.MXXtMYX.LXl.LL2,LINV 

6 FOBMATC * ,6( 2X , 15) ) 
LINV=LL2-LXI 
IF(LINV.LT,1) GO TO 20 
LXl=LL2 
PETURN 

20 CONTINUE 
I SX=1 
L= 1 
JJ=NPR0B+1 
DO 10 I=L,NPR0B 
IJ=I+I 
on AO J=IJ«JJ 
IF{IPT(I).GE.IPT(J)) GO TO 40 
IS=IPT(J) 
IPT(J)=IPT{1) 
IPT(I)=IS 

40 CONTINUE 
L=L+1 

10 CONTINUE 
RETURN 
END 
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SUPQOUTINF TIMELG{IFINOtNN.MAX) 
COMMON ICI(500.4),IC2(500.4,15).IC3(500).IC4(500).1C5<500) 
COMMON IC6(500),1C7(500)»IND(5CC).ISAVE ( 500.3) .ICS3 I 500) 
IS=ICI(IFIND,1) 
ISS=1CI(1FIN0,2) 
00 1 1=1.NN 
L = I 
IF( ICI(I.1)•AND.I5S.FQ.ICI(I.2)) GC TO 2 

1 CONTINUF 
2 DO 3 I=L.NN 
LL = I 
IF( IS.EQ.ICl(I.1 ).ANC.I?S.FO.ICI(I.2)) GO TO 3 
LL=LL-1 
GO TO 4 

3 CONTINUF 
IF( I5.F0.IC1 (NN, 1 ).4ND. ISS.EO.ICKNN.P) ) LL = NN 

4 IM4X=0 
L5 = 0 
DT 5 I =L ,LL 
IF( IC5(I).Lc.IMAX) GC TO 5 
L5 = I 
ÎMAX=IC5(I) 

5 CONTINUF 
IF(L5.^0.0> MAX5=0 
IGUT=0 
CALL RECHK{inUT,L,LL,IFIND,IMAX,NN.MJM) 
MAX=MJM 
IF( lOUT.FO.l ) PETUr'N 
IF(LS.=0.0) GO TO 6 
YAXS=IC7{L5; 
MAX5=0 
IF( IMAX. NE.O) GO TO 6 
IC5(IFIND)=1 
IC7(IFIND)=IC4(IFIND) 
GO TO 10 

6 IC5(IFINO)=IMAX+1 
IF(MAX.GF.MAX5» GO TO Q 
IC7(IFIND)=MAX5 +IC4(IFINr) 
ir6(IFIND)=MAX5 
PSTUPN 

9 ÎC6(IPIND)=MAX 
IC7(IFIND)=MAX + IC4(I FIND) 

10 CONTINUF 
MAX=n 
00 11 1=1,NN 

11 IF( IC7(I ).GE.MAX) MAX = IC7(I) 
RETURN 
END 
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SUPROUTINE RFCHK {lOUT.L tLL # I F ! MD , I MAX .NN . M JM ) 
COMMON ICl(500.4).ÎC2(50 0t4,15ït IC3(500) ,IC4(500).IC5 

1(500) 
COMWON IC6(500).IC7(500)$ I NO(500),I SAVE( 500.3)•IC&3( 500) 
IOUT=0 
ISS=0 
INTV=IC4(IFIND) 
MJM = 0 
DO 41 K=1,NN 
IF (ICI(K,3).NF.ICI(IFIND,3)) GC TO 41 
IF(IC7(K).GE.MJM) MJM=!C7(K) 

41 CONTINUE 
IF< WJM.GE.O) RETURN 
MAXW=IMAX 
IF(MJM.eQ.0.4NO.MAXM.EQ.O) GO TO 2000 
IF(MAXM.E0»0) GO TO 1001 
00 50 K=1,MAXM 
DO 50 I=L»LL 
IF(IC5(I).NF.K) GO TO 50 
ITIME=IC7(I ) 
IZ = I 
L2 = L 
IFCVJM.GT,ITIME) GO TC 50 
II = I 
IAVA=IC6(I) 
IF( IAVA.LF.MJM) MJM = ITIMF 
IF(MJM,G«^« lAVA) GO TO 50 
IAAA=1AVA-MJM 
IF(INTV.GT.IAAA.AND.K.FO.l) VJM=ITIME 
IF(INTV.GT.I AAA.ANO.K.FO.1 ) GO TO 50 
IF(IAvA,GT,0,AND.iC5Cn.EQ.1«AND.INTV.LE .lAAAi GO TO 500 
IF(ISS.FO.1) GO TO 6000 
ISS = 1 
IFdNTV.LE, lAAA) GO TC 500 

6000 CONTINUE 
KK=K+1 
IF(KK.GT.MAXM) GO TO 50 
DO 52 IL=L,LL 
IF( IC5C ID .NF.KK ) GO TO 52 
IP(INTV.LF,lAVA) MJM=ITIWE 
IAVA=IC6(IL)-ITIMF 
IZ = IL 
IF(INTV.LF•IAVA) GO TO 500 

52 CONTINUE 
GO TO 50 

500 IAM=IZ 
IXX=IC5(IZ ) 
DO 60 KK=L.LL 
IF(IC5(KK).LT.IXX) GO TO 60 
IC5(KK)=IC5(KK)+1 
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60 CONTINUF 
IAW=IPINO 
IC5CIAM)=IXX 
IF(IXX.NF.1) GO TO 70 
IC7CIAM)=INTV+MJM 
IC6(lAV» =0 + MJM 
I0UT=1 
RETURN 

70 CONTINUr 
IC6(IAM)=MJM 
IC7(IAM)=MJM +IC4(IFIND) 
I']UT=1 
GO TO 1001 

90 CONTINUE 
50 CONTINUF 
1001 PFTURN 

2000 IC5(IFIND)=1 
IC6( I<̂ IN0 )=0 
IC7(IFIND)=IC4(IFIND) 
I0UT=1 
RETURN 

END 
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